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1

Getting Started

What Is the GARCH Toolbox? (p. 1-2) Introduces the GARCH Toolbox, and describes its 
intended use and its capabilities.

GARCH Overview (p. 1-3) Introduces GARCH and the characteristics of GARCH 
models that are commonly associated with financial time 
series.

Software Requirements and 
Compatibility (p. 1-5)

Lists other MathWorks toolboxes and version 
compatibility required by the GARCH Toolbox. 

Expected Background (p. 1-6) Describes the intended audience for this product.

Technical Conventions (p. 1-7) Describes the use of common mathematical terms in this 
guide. See the “Glossary” for definitions of 
GARCH-specific terms.

Data Sets (p. 1-11) Introduces the data sets that are used in examples 
throughout this manual.
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What Is the GARCH Toolbox?
The GARCH Toolbox, combined with MATLAB® and the Optimization and 
Statistics Toolboxes, provides an integrated computing environment for 
modeling the volatility of univariate economic time series. The GARCH 
Toolbox uses a general ARMAX conditional mean model combined with a 
conditional variance model of GARCH, GJR, or EGARCH form to perform 
simulation, forecasting, and parameter estimation of univariate time series in 
the presence of conditional heteroscedasticity. Supporting functions perform 
tasks such as pre- and postestimation diagnostic testing, hypothesis testing of 
residuals, model order selection, and time-series transformations. Graphics 
capabilities let you plot correlation functions and visually compare matched 
innovations, volatility, and return series. 

More specifically, you can

• Perform Monte Carlo simulation of univariate returns, innovations, and 
conditional volatilities

• Specify general ARMAX conditional mean models combined with conditional 
variance models of GARCH, GJR, or EGARCH form for univariate asset 
returns

• Estimate parameters of general ARMAX conditional mean models combined 
with conditional variance models of GARCH, GJR, or EGARCH form

• Generate minimum mean square error forecasts of the conditional mean and 
conditional variance of univariate return series

• Perform pre- and postestimation diagnostic and hypothesis testing, such as 
Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and 
AIC/BIC model order selection

• Perform graphical correlation analysis, including autocorrelation, cross 
correlation, and partial autocorrelation

• Convert price/return series to return/price series, and transform finite-order 
ARMA models to infinite-order AR and MA models
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GARCH Overview
This section discusses

• “What Is GARCH?” on page 1-3

• “Why Use GARCH?” on page 1-3

• “GARCH Limitations” on page 1-4

What Is GARCH?
GARCH stands for Generalized Autoregressive Conditional 
Heteroscedasticity. Loosely speaking, you can think of heteroscedasticity as 
time-varying variance (i.e., volatility). Conditional implies a dependence on the 
observations of the immediate past, and autoregressive describes a feedback 
mechanism that incorporates past observations into the present. GARCH then 
is a mechanism that includes past variances in the explanation of future 
variances. More specifically, GARCH is a time-series technique that allows 
users to model the serial dependence of volatility.

In this manual, whenever a time series is said to have GARCH effects, the 
series is heteroscedastic, i.e., its variances vary with time. If its variances 
remain constant with time, the series is homoscedastic.

Why Use GARCH?
GARCH modeling builds on advances in the understanding and modeling of 
volatility in the last decade. It takes into account excess kurtosis (i.e., fat tail 
behavior) and volatility clustering, two important characteristics of financial 
time series. It provides accurate forecasts of variances and covariances of asset 
returns through its ability to model time-varying conditional variances. As a 
consequence, you can apply GARCH models to such diverse fields as risk 
management, portfolio management and asset allocation, option pricing, 
foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for 
individual stocks, but for stock portfolios and indices, and equity futures 
markets as well [5]. These effects are important in such areas as value-at-risk 
(VaR) and other risk management applications that concern the efficient 
allocation of capital. You can use GARCH models to examine the relationship 
between long- and short-term interest rates. As the uncertainty for rates over 
various horizons changes through time, you can also apply GARCH models in 
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the analysis of time-varying risk premiums [5]. Foreign exchange markets, 
which couple highly persistent periods of volatility and tranquility with 
significant fat-tail behavior [5], are particularly well-suited for GARCH 
modeling.

Note  Bollerslev [4] developed GARCH as a generalization of Engle’s [12] 
original ARCH volatility modeling technique. Bollerslev designed GARCH to 
offer a more parsimonious model (i.e., using fewer parameters) that lessens 
the computational burden.

GARCH Limitations
Although GARCH models are useful across a wide range of applications, they 
do have limitations:

• GARCH models are only part of a solution. Although GARCH models are 
usually applied to return series, financial decisions are rarely based solely on 
expected returns and volatilities. 

• GARCH models are parametric specifications that operate best under 
relatively stable market conditions [15]. Although GARCH is explicitly 
designed to model time-varying conditional variances, GARCH models often 
fail to capture highly irregular phenomena, including wild market 
fluctuations (e.g., crashes and subsequent rebounds), and other highly 
unanticipated events that can lead to significant structural change. 

• GARCH models often fail to fully capture the fat tails observed in asset 
return series. Heteroscedasticity explains some of the fat-tail behavior, but 
typically not all of it. To compensate for this limitation, fat-tailed 
distributions such as Student’s t have been applied to GARCH modeling.
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Software Requirements and Compatibility
The GARCH Toolbox requires the Statistics and Optimization Toolboxes. 
However, you need not read those manuals before reading this one. 

The GARCH Toolbox Version 2.1 is compatible with Release 14 with 
Service Pack 3, including MATLAB 7.1, Statistics Toolbox 5.1, and 
Optimization Toolbox 3.0.3.
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Expected Background
This guide is a practical introduction to the GARCH Toolbox. In general, it 
assumes you are familiar with the basic concepts of General Autoregressive 
Conditional Heteroscedasticity (GARCH) modeling. 

In designing the GARCH Toolbox and this manual, we assume your title is 
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Economist

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities 
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability theory, statistics, and algebra

• Understand linear or matrix algebra, calculus, and differential equations

• Previously done traditional programming (C, Fortran, etc.)

• Responsible for instruments or analyses involving large sums of money

• Perhaps new to MATLAB
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Technical Conventions 
This user’s guide uses the following definitions and descriptions. See the 
“Glossary” for general term definitions.

Array and Vector Size
The size of an array describes the dimensions of the array. If a matrix has m 
rows and n columns, its size is m-by-n. If two arrays are the same size, their 
dimensions are the same. 

If two vectors are of the same size, then they not only have the same length, but 
they also have the same orientation.

Vector Length
The length of a vector indicates only the number of elements in the vector. If 
the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1 (column) 
vector. Two vectors of length n, one a row vector and the other a column vector, 
do not have the same size. 

Time-Series Arrays
The concept of a time series, an ordered set of observations stored in a 
MATLAB array, is used throughout this User's Guide. The rows of a 
time-series array correspond to time-tagged indices, or observations, and the 
columns correspond to sample paths, independent realizations, or individual 
time series. In any given column, the first row contains the oldest observation 
and the last row contains the most recent observation. In this representation, 
a time-series array is said to be column-oriented.

Note  Although some GARCH Toolbox functions can process univariate 
time-series arrays formatted as either row or column vectors, many functions 
now strictly enforce the column-oriented representation of a time series. 
Because of this and to avoid ambiguity, you should format single realizations 
of univariate time series as column vectors. Representing a time series in 
column-oriented format will avoid misinterpretation of the arguments, and 
will also make it easier for you to display data in the command window.
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Conditional vs. Unconditional
The term conditional implies explicit dependence on a past sequence of 
observations. The term unconditional is more concerned with long-term 
behavior of a time series and assumes no explicit knowledge of the past. 

Precision
The GARCH Toolbox performs all its calculations in double precision. Select 
File -> Preferences -> Command Window -> Text display to set the numeric 
format for your displays. The default is short.

Prices, Returns, and Compounding
The GARCH Toolbox assumes that time-series vectors and matrices are 
time-tagged series of observations. If you have a price series, the toolbox lets 
you convert it to a return series using either continuous compounding or simple 
periodic compounding.

If you denote successive price observations made at times  and  as  and 
, respectively, continuous compounding transforms a price series  

into a return series  as 

(1-1)

Simple periodic compounding defines the transformation as 

(1-2)

Continuous compounding is the default compounding method of the GARCH 
Toolbox, and is the preferred method for most of continuous-time finance. Since 
GARCH modeling is typically based on relatively high frequency data 
(i.e., daily or weekly observations), the difference between the two methods is 
usually small. However, there are some toolbox functions whose results are 
approximations for simple periodic compounding, but exact for continuous 
compounding. If you adopt the continuous compounding default convention 
when moving between prices and returns, all toolbox functions produce exact 
results.

t t 1+ Pt
Pt 1+ Pt{ }

yt{ }

yt
Pt 1+

Pt
-------------log Pt 1+log Ptlog–= =

yt
Pt 1+ Pt–

Pt
-------------------------

Pt 1+

Pt
------------- 1–= =
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Stationary and Nonstationary Time Series
The GARCH Toolbox assumes that return series are stationary processes. The 
price-to-return transformation generally guarantees a stable data set for 
GARCH modeling.

This figure illustrates an equity price series. In this case, it shows daily closing 
values of the Nasdaq™ Composite Index (see “Data Sets” on page 1-11). Notice 
that there appears to be no long-run average level about which the series 
evolves. This is evidence of a nonstationary time series. 

The following figure, however, illustrates the continuously compounded 
returns associated with the same price series. In contrast, the returns appear 
to be quite stable over time, and the transformation from prices to returns has 
produced a stationary time series.
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The GARCH Toolbox assumes that return series are stationary processes. This 
may seem limiting, but the price-to-return transformation is common and 
generally guarantees a stable data set for GARCH modeling.
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Data Sets
The GARCH Toolbox documentation uses the following financial time series. 
You can find them in the MAT-file garchdata.mat.

• “DEM2GBP” on page 1-11

• “NASDAQ” on page 1-12

• “NYSE” on page 1-12

DEM2GBP
The DEM2GBP series contains daily observations of the Deutschmark/British 
Pound foreign exchange rate, i.e., an FX price series. The sample period is from 
January 2, 1984, to December 31,1991, for a total of 1975 daily observations of 
FX exchange rates.

The DEM2GBP price series is derived from the corresponding daily percentage 
nominal returns for the Deutschemark/British Pound exchange rate computed 
as

where  is the bilateral Deutschmark/British Pound FX rate constructed from 
the corresponding U.S. dollar rates. The original nominal returns, expressed in 
percent, were originally published in Bollerslev and Ghysels [7].

You can also obtain the percentage returns data from the Journal of Business 
and Economic Statistics (JBES) FTP site, 
ftp://www.amstat.org/JBES_View/96-2-APR/bollerslev_ghysels/bollers
lev.sec41.dat.

The sample period discussed in the Bollerslev and Ghysels article is from 
January 3, 1984, to December 31, 1991, for a total of 1974 observations of daily 
percentage nominal returns. These returns, combined with an approximate 
closing exchange rate from January 2, 1984, obtained from OANDA.com, The 
Currency Site™ (http://www.oanda.com), allow an approximate 
reconstruction of the corresponding FX closing price series.

This particular FX price series is included in the GARCH Toolbox 
documentation because it has been promoted as an informal benchmark for 
GARCH time-series software validation. See McCullough & Renfro [21], and 
Brooks, Burke, & Persand [9] for details. Note that the estimation results 

yt 100ln Pt 1+ Pt⁄( ) 100 ln Pt 1+( ) ln Pt( )–[ ]= =
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published in these references are based on the original percentage returns. The 
GARCH Toolbox presents the data as a price series merely to maintain 
consistency with the other two datasets highlighted throughout this manual.

NASDAQ
The NASDAQ series contains daily closing values of the Nasdaq™ Composite 
Index. The sample period is from January 2, 1990, to December 31, 2001, for a 
total of 3028 daily equity index observations.

The Nasdaq Composite closing index values were downloaded directly from the 
Market Data section of the Nasdaq™ web page.

NYSE
The NYSE series contains daily closing values of the New York Stock 
Exchange™ Composite Index. The sample period is from January 2, 1990, to 
December 31, 2001, for a total of 3028 daily equity index observations of the 
NYSE Composite Index.

The NYSE Composite Index daily closing values were downloaded directly 
from the Market Information section of the NYSE™ web page.
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Uses the default model to examine the Deutschmark/British 
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Modeling of Financial Time Series
This section discusses

• “Characteristics of Financial Time Series” on page 2-2

• “Correlation and Forecasting of Financial Time Series” on page 2-4

• “Serial Dependence in Innovations” on page 2-4

Characteristics of Financial Time Series
GARCH models are designed to capture certain characteristics that are 
commonly associated with financial time series:

• Fat tails

• Volatility clustering

• Leverage effects 

Probability distributions for asset returns often exhibit fatter tails than the 
standard normal, or Gaussian, distribution. The fat tail phenomenon is known 
as excess kurtosis. Time series that exhibit a fat tail distribution are often 
referred to as leptokurtic. The red (dashed) line in the following figure 
illustrates excess kurtosis. The blue (solid) line shows a Gaussian distribution.
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In addition, financial time series usually exhibit a characteristic known as 
volatility clustering, in which large changes tend to follow large changes, and 
small changes tend to follow small changes. In either case, the changes from 
one period to the next are typically of unpredictable sign. Large disturbances, 
positive or negative, become part of the information set used to construct the 
variance forecast of the next period's disturbance. In this manner, large shocks 
of either sign are allowed to persist, and can influence the volatility forecasts 
for several periods. 

Volatility clustering, or persistence, suggests a time-series model in which 
successive disturbances, although uncorrelated, are nonetheless serially 
dependent. The following figure illustrates this characteristic. It shows the 
daily returns of the New York Stock Exchange™ Composite Index (see “Data 
Sets” on page 1-11).

Volatility clustering (a type of heteroscedasticity) accounts for some but not all 
of the fat tail effect (or excess kurtosis) typically observed in financial data. A 
part of the fat tail effect can also result from the presence of non-Gaussian 
asset return distributions that just happen to have fat tails, such as 
Student’s t.

Finally, certain classes of asymmetric GARCH models are also capable of 
capturing the so-called leverage effect, in which asset returns are often 
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observed to be negatively correlated with changes is volatility. That is, for 
certain asset classes, most notably equities but excluding foreign exchange, 
volatility tends to rise in response to lower than expected returns and to fall in 
response to higher than expected returns. Such an effect suggests GARCH 
models that include an asymmetric response to positive and negative surprises.

Correlation and Forecasting of Financial Time Series
If you treat a financial time series as a sequence of random observations, this 
random sequence, or stochastic process, may exhibit some degree of correlation 
from one observation to the next. You can use this correlation structure to 
predict future values of the process based on the past history of observations. 
Exploiting the correlation structure, if any, allows you to decompose the time 
series into a deterministic component (i.e., the forecast), and a random 
component (i.e., the error, or uncertainty, associated with the forecast).

The following equation uses these components to represent a univariate model 
of an observed time series .

In this equation,

•  represents the forecast, or deterministic component, of the current 
return as a function of any information known at time , including past 
innovations , past observations , and any 
other relevant explanatory time-series data, .

•  is the random component. It represents the innovation in the mean of . 
Note that you can also interpret the random disturbance, or shock, , as the 
single-period-ahead forecast error. 

Serial Dependence in Innovations
A common assumption when modeling financial time series is that the forecast 
errors (i.e., the innovations) are zero-mean random disturbances uncorrelated 
from one period to the next. 
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Although successive innovations are uncorrelated, they are not independent. 
In fact, an explicit generating mechanism for a GARCH innovations process, 

, is

(2-1)

where  is the conditional standard deviation derived from one of the 
conditional variance equations shown in “Conditional Variance Models” on 
page 2-6. 

 is a standardized, independent, identically distributed (i.i.d.) random draw 
from some specified probability distribution. The GARCH Toolbox provides two 
distributions for modeling GARCH processes: Gaussian and Student’s t. 
Eq. (2-1) illustrates that a GARCH innovations process  simply rescales 
an i.i.d process  such that the conditional standard deviation incorporates 
the serial dependence of the conditional variance equation. Equivalently, 
Eq. (2-1) also states that a standardized GARCH disturbance, , is itself 
an i.i.d. random variable .

Notice that GARCH models are consistent with various forms of efficient 
market theory, which state that asset returns observed in the past cannot 
improve the forecasts of asset returns in the future. Since GARCH innovations 

 are serially uncorrelated, GARCH modeling does not violate efficient 
market theory.
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Conditional Mean and Variance Models
This section describes the conditional mean and variance models that the 
GARCH Toolbox supports and offers some comments to help clarify their 
descriptions.

• “Conditional Mean Model” on page 2-6

• “Conditional Variance Models” on page 2-6

• “Comments on the Models” on page 2-9

Conditional Mean Model
This general ARMAX(R,M,Nx) model for the conditional mean applies to all 
variance models.

(2-2)

with autoregressive coefficients , moving average coefficients , 
innovations , and returns .  is an explanatory regression matrix in 
which each column is a time series and  denotes the th row and th 
column. 

The eigenvalues  associated with the characteristic AR polynomial 

must lie inside the unit circle to ensure stationarity. Similarly, the eigenvalues 
associated with the characteristic MA polynomial 

must lie inside the unit circle to ensure invertibility. 

Conditional Variance Models
The conditional variance of the innovations, , is by definition

(2-3)
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The key insight of GARCH lies in the distinction between conditional and 
unconditional variances of the innovations process . The term conditional 
implies explicit dependence on a past sequence of observations. The term 
unconditional is more concerned with long-term behavior of a time series and 
assumes no explicit knowledge of the past. 

The various GARCH models characterize the conditional distribution of  by 
imposing alternative parameterizations to capture serial dependence on the 
conditional variance of the innovations. “Comments on the Models” on page 2-9 
further defines the conditional variance models.

GARCH(P,Q) Conditional Variance
The general GARCH(P,Q) model for the conditional variance of innovations is

 (2-4)

with constraints

Note that the basic GARCH(P,Q) model is a symmetric variance process, in 
that the sign of the disturbance is ignored. 

GJR(P,Q) Conditional Variance
The general GJR(P,Q) model for the conditional variance of the innovations 
with leverage terms is

(2-5)
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where

and

EGARCH(P,Q) Conditional Variance
The general EGARCH(P,Q) model for the conditional variance of the 
innovations with leverage terms and an explicit probability distribution 
assumption is

(2-6)
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EGARCH(P,Q) models are treated as ARMA(P,Q) models for . Thus, the 
stationarity constraint for EGARCH(P,Q) models is included by ensuring that 
the eigenvalues of the characteristic polynomial

 

are inside the unit circle.

Note that EGARCH models are fundamentally different from GARCH and GJR 
models in that the standardized innovation, , serves as the forcing variable 
for both the conditional variance and the error. GARCH and GJR models allow 
for volatility clustering (i.e., persistence) by a combination of the  and  
terms, whereas persistence in EGARCH models is entirely captured by the  
terms.

Comments on the Models
The econometrics literature is often vague and lacks consensus regarding the 
exact definition of any particular class of GARCH model. As a result, there are 
often discrepancies among software vendors, researchers, and references as to 
the exact functional form, or parameter constraints, or both, of almost all 
GARCH models. To help you reconcile some of these discrepancies, a few 
comments are useful:

• Although the functional form of a GARCH(P,Q) model (Eq. (2-4)) is quite 
standard, alternative positivity constraints exist. However, these 
alternatives involve additional nonlinear inequalities that are difficult to 
impose in practice, and do not affect the GARCH(1,1) model, which is by far 
the most common. In contrast, the standard linear positivity constraints 
imposed by the GARCH Toolbox are commonly used, and are 
straightforward to implement.

• Many references and software vendors refer to the GJR(P,Q) model 
(Eq. (2-5)) as a TGARCH, or Threshold GARCH, model. However, others 
make a very clear distinction between GJR(P,Q) and TGARCH(P,Q) models: 
a GJR(P,Q) model is a recursive equation for the conditional variance, 
whereas a TGARCH(P,Q) model is the identical recursive equation for the 
conditional standard deviation (see, for example, Hamilton [18] page 669, 
Bollerslev, et. al. [6] page 2970). Furthermore, additional discrepancies exist 
regarding whether or not to allow both negative and positive innovations to 
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affect the conditional variance process. The GJR(P,Q) model included in the 
GARCH Toolbox is relatively standard.

• The manner in which the GARCH Toolbox parameterizes GARCH(P,Q) and 
GJR(P,Q) models, Eq. (2-4) and Eq. (2-5), including constraints, allows you 
to interpret a GJR(P,Q) model as a straightforward extension of a 
GARCH(P,Q) model. Equivalently, you can interpret a GARCH(P,Q) model 
as a restricted GJR(P,Q) model with zero leverage terms. This latter 
interpretation is convenient for, among other things, estimation and 
hypothesis testing via likelihood ratios.

• For GARCH(P,Q) and GJR(P,Q) models, the lag lengths  and , as well as 
the magnitudes of the coefficients  and , determine the extent to which 
disturbances persist. These values then determine the minimum amount of 
presample data needed to initiate the simulation and estimation processes. 
Note that persistence in EGARCH models is entirely captured by the  
terms.

• Although the functional form of an EGARCH(P,Q) model (Eq. (2-6)) is 
relatively standard, it is not the same as Nelson's original (see Nelson [22]). 
Many forms of EGARCH(P,Q) models exist. Another popular form is 

This EGARCH(P,Q) model form appears to offer an advantage in that it does 
not explicitly make any assumptions about the conditional probability 
distribution (i.e., whether the distribution of  is Gaussian or 
Student’s t). However, this is not entirely true. Although no distribution is 
explicitly assumed in the above equation, generally such an assumption is 
required for forecasting as well as Monte Carlo simulation in the absence of 
user-specified presample data. In fact, the above equation can easily be 
rearranged to highlight the probability distribution.

The particular form of the EGARCH(P,Q) model, Eq. (2-6), implemented in 
the GARCH Toolbox is selected because it closely resembles Nelson's original 
form and is widely used.

• Although EGARCH(P,Q) models require no parameter constraints to ensure 
positive conditional variances, stationarity constraints are necessary. Since 
an EGARCH(P,Q) model is treated as an ARMA(P,Q) model for the 
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logarithm of the conditional variance, the GARCH Toolbox imposes 
non-linear constraints on the  coefficients to ensure that the eigenvalues 
of the characteristic polynomial are all inside the unit circle (see, for 
example, page 2969 of Bollerslev, Engle, and Nelson [6], and page 12 of 
Bollerslev, Chou, and Kroner [5]).

• The EGARCH(P,Q) and GJR(P,Q) models, Eq. (2-6) and Eq. (2-5), are both 
asymmetric models designed to capture the leverage effect, or negative 
correlation, between asset returns and volatility. Both the EGARCH(P,Q) 
and GJR(P,Q) models include leverage terms that explicitly take into 
account the sign as well as the magnitude of the innovation noise term. 
Although both models are designed to capture the leverage effect, the 
manner in which they do so is markedly different.

For EGARCH(P,Q) models, the leverage coefficients  are applied to the 
actual innovations . For GJR(P,Q) models, the leverage coefficients 
enter the model through a Boolean indicator, or dummy, variable. For this 
reason, if the leverage effect does indeed hold, the leverage coefficients  
should be negative for EGARCH(P,Q) models and positive for GJR(P,Q) 
models. This is in contrast to GARCH(P,Q) models, in which the sign of the 
innovation is ignored.

• Although GARCH(P,Q) and GJR(P,Q) models, Eq. (2-4) and Eq. (2-5), 
include terms related to the model innovations, , EGARCH(P,Q) 
models, Eq. (2-6), include terms related to the standardized innovations, 

, such that  acts as the forcing variable for both the 
conditional variance and the error. In this respect, EGARCH(P,Q) models 
are fundamentally unique.

• Generally, there are no asymmetries in foreign exchange rates, and therefore 
asymmetric EGARCH(P,Q) and GJR(P,Q) conditional variance models are 
often inappropriate for modeling such return series.

Gi

Li
εt i–

Li

εt ztσt=

zt εt σt⁄= zt



2 GARCH Overview

2-12

The Default Model
The GARCH Toolbox default model is the simple (yet common) constant mean 
model with GARCH(1,1) Gaussian innovations, based on Eq. (2-2) and 
Eq. (2-4).

(2-7)

(2-8)

In the conditional mean model, Eq. (2-7), the returns, , consist of a simple 
constant, plus an uncorrelated, white noise disturbance, . This model is often 
sufficient to describe the conditional mean in a financial return series. Most 
financial return series do not require the comprehensiveness that an ARMAX 
model provides.

In the conditional variance model, Eq. (2-8), the variance forecast, , consists 
of a constant plus a weighted average of last period's forecast, , and last 
period's squared disturbance, . Although financial return series, as 
defined in Eq. (1-1) and Eq. (1-2), typically exhibit little correlation, the 
squared returns often indicate significant correlation and persistence. This 
implies correlation in the variance process, and is an indication that the data 
is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (2-7) and Eq. (2-8) has 
several benefits:

• It represents a parsimonious model that requires you to estimate only four 
parameters ( , , , and ). According to Box and Jenkins [8], the fewer 
parameters to estimate, the less that can go wrong. Elaborate models often 
fail to offer real benefits when forecasting (see Hamilton [18], page 109).

• The simple GARCH(1,1) model captures most of the variability in most 
return series. Small lags for  and  are common in empirical applications. 
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate 
for modeling volatilities even over long sample periods (see Bollerslev, Chou, 
and Kroner [5], pages 10 and 22).
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Primary Toolbox Functions
Use of the GARCH Toolbox focuses on three high-level processing functions: 
garchfit, garchpred, and garchsim, for model estimation, forecasting, and 
Monte Carlo simulation, respectively. A fourth function, garchinfer, infers the 
innovations and conditional standard deviations via inverse filtering, and is 
closely related to garchfit in that they both call the appropriate objective 
function.

These functions use a GARCH specification structure to share information 
about the specified model. The specification structure contains the model 
orders for the chosen conditional mean and variance models, and the 
parameters for those models. All these functions accept a specification 
structure as input, but only garchfit can update the structure and provide it 
as an output. (See “GARCH Specification Structure” on page 3-1 for detailed 
information about the structure.)

An analysis process using real-world data might involve calling these 
processing functions:

garchfit Estimates the model parameters. garchfit can accept a 
specification structure as an input. If you provide only the 
model orders for the chosen conditional mean and variance 
model, garchfit populates it with the coefficients resulting 
from the estimation process. If you provide, in addition, valid 
coefficients, garchfit uses them as initial estimates that are 
refined by the estimation process. If you provide no 
specification structure, garchfit assumes the default model 
(see “The Default Model” on page 2-12).

 In all cases, garchfit returns an updated specification 
structure, which encapsulates parameter estimates. This 
output structure is of the same form as the input structure, 
and you can use it as an input for further modeling.
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garchpred Forecasts returns and conditional standard deviations. It 
accepts as input the specification structure provided by the 
estimation engine garchfit. You can also use garchpred to 
forecast volatility of asset returns over multiperiod holding 
intervals, or to forecast the standard errors of conditional 
mean forecasts.

garchsim Simulates one or more sample paths for the return series, 
innovations, and conditional standard deviation processes, for 
the specified conditional mean and variance model. You can 
use these sample paths to perform Monte Carlo simulation of a 
given process.
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Analysis and Estimation Example Using the Default Model
The example in this section uses the GARCH Toolbox default model to model a 
foreign exchange series. Specifically, the example explores

• “Preestimation Analysis” on page 2-15

• “Parameter Estimation” on page 2-23

• “Postestimation Analysis” on page 2-26

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

For more information see “Model Selection and Analysis” on page 8-1.

Preestimation Analysis
When estimating the parameters of a composite conditional mean/variance 
model, you may occasionally encounter convergence problems. For example, 
the estimation may appear to stall, showing little or no progress. It may 
terminate prematurely prior to convergence. Or, it may converge to an 
unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a prefit analysis. This 
section uses an example to show techniques such as plotting the return series, 
and examining the ACF and PACF, as well as some preliminary tests, 
including Engle’s ARCH test and the Q-test. The goal is to avoid convergence 
problems by selecting the simplest model that adequately describes your data.

The following preestimation analysis example loads the data in the form of a 
price series, then converts the price series to a return series. It checks the 
return series for correlation, and then quantifies the correlation.
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1 Load the raw data: daily exchange rate. Start by loading the MATLAB 
binary file garchdata.mat, and examining its contents using the Workspace 
Browser.

load garchdata

The data consists of three single-column vectors of different lengths, 
DEM2GBP, NASDAQ, and NYSE. Each vector is a separate price series for the 
named group. (See “Data Sets” on page 1-11 for more information about 
these data sets.) You can also use the whos command to see all the variables 
in the current workspace. 

whos

  Name         Size      Bytes    Class

  DEM2GBP    1975x1      15800    double array
  NASDAQ     3028x1      24224    double array
  NYSE       3028x1      24224    double array

Grand total is 8031 elements using 64248 bytes

This example uses DEM2GBP, which contains daily price observations of the 
Deutschemark/British Pound foreign exchange rate. Use the MATLAB plot 
function to examine the data.
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plot([0:1974],DEM2GBP)
set(gca,'XTick',[1 659 1318 1975])
set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...
    'Jan 1992'})
ylabel('Exchange Rate')
title('Deutschmark/British Pound Foreign Exchange Rate')

Note  The set command allows you to set object properties. This example 
uses it to set the position of and relabel the x-axis ticks of the current figure.

2 Convert the prices to a return series.  Because GARCH modeling assumes 
a return series, you need to convert the prices to returns. Use the utility 
function price2ret, and then examine the result.
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dem2gbp = price2ret(DEM2GBP);

The workspace information shows both the 1975-point price series and the 
1974-point return series derived from it. 

Now, use the MATLAB plot function to see the return series. Notice the 
presence of volatility clustering in the raw return series.

plot(dem2gbp)
set(gca,'XTick',[1 659 1318 1975])
set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...
    'Jan 1992'})
ylabel('Return')
title('Deutschmark/British Pound Daily Returns')

3 Check for correlation in the return series. You can check qualitatively for 
correlation in the raw return series by calling the functions autocorr and 
parcorr to examine the sample autocorrelation function (ACF) and 
partial-autocorrelation (PACF) function, respectively. 

The autocorr function computes and displays the sample ACF of the 
returns, along with the upper and lower standard deviation confidence 
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bounds, based on the assumption that all autocorrelations are zero beyond 
lag zero. 

autocorr(dem2gbp)
title('ACF with Bounds for Raw Return Series')

Similarly, the parcorr function displays the sample PACF with upper and 
lower confidence bounds.

parcorr(dem2gbp)
title('PACF with Bounds for Raw Return Series')
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Since the individual ACF values can have large variances and can also be 
autocorrelated, you should view the sample ACF and PACF with care (see 
Box, Jenkins, Reinsel [8], pages 34 and 186). However, as preliminary 
identification tools, the ACF and PACF provide some indication of the broad 
correlation characteristics of the returns. From these figures for the ACF 
and PACF, there is very little indication that you need to use any correlation 
structure in the conditional mean. Also, notice the similarity between the 
graphs.

4 Check for correlation in the squared returns. Although the ACF of the 
observed returns exhibits little correlation, the ACF of the squared returns 
may still indicate significant correlation and persistence in the second-order 
moments. Check this by plotting the ACF of the squared returns.

autocorr(dem2gbp.^2)
title('ACF of the Squared Returns')

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

PACF with Bounds for Raw Return Series



Analysis and Estimation Example Using the Default Model

2-21

This figure shows that, although the returns themselves are largely 
uncorrelated, the variance process exhibits some correlation. This is 
consistent with the earlier discussion in the section, “The Default Model” on 
page 2-12. Note that the ACF shown in this figure appears to die out slowly, 
indicating the possibility of a variance process close to being nonstationary. 

Note  The syntax in the preceding command, an operator preceded by the dot 
operator (.), indicates that the operation is performed on an 
element-by-element basis. In the preceding command, dem2gbp.^2 indicates 
that each element of the vector dem2gbp is squared.

5 Quantify the correlation. You can quantify the preceding qualitative 
checks for correlation using formal hypothesis tests, such as the 
Ljung-Box-Pierce Q-test and Engle's ARCH test.

The function lbqtest implements the Ljung-Box-Pierce Q-test for a 
departure from randomness based on the ACF of the data. The Q-test is most 
often used as a postestimation lack-of-fit test applied to the fitted 
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innovations (i.e., residuals). In this case, however, you can also use it as part 
of the prefit analysis because the default model assumes that returns are 
just a simple constant plus a pure innovations process. Under the null 
hypothesis of no serial correlation, the Q-test statistic is asymptotically 
Chi-Square distributed (see Box, Jenkins, Reinsel [8], page 314). 

The function archtest implements Engle's test for the presence of ARCH 
effects. Under the null hypothesis that a time series is a random sequence of 
Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also 
asymptotically Chi-Square distributed (see Engle [12], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean 
decision flag. H = 0 implies that no significant correlation exists (i.e., do not 
reject the null hypothesis). H = 1 means that significant correlation exists 
(i.e., reject the null hypothesis). The remaining outputs are the P-value 
(pValue), the test statistic (Stat), and the critical value of the Chi-Square 
distribution (CriticalValue).

Ljung-Box-Pierce Q-Test. Using lbqtest, you can verify, at least 
approximately, that no significant correlation is present in the raw returns 
when tested for up to 10, 15, and 20 lags of the ACF at the 0.05 level of 
significance. 

[H,pValue,Stat,CriticalValue] = ...
      lbqtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]

ans =
         0    0.7278    6.9747   18.3070
         0    0.2109   19.0628   24.9958
         0    0.1131   27.8445   31.4104

However, there is significant serial correlation in the squared returns when 
you test them with the same inputs. 

[H,pValue,Stat,CriticalValue] = ...
      lbqtest((dem2gbp-mean(dem2gbp)).^2,[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]
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ans =
    1.0000         0  392.9790   18.3070
    1.0000         0  452.8923   24.9958
    1.0000         0  507.5858   31.4104

Engle's ARCH Test. You can also perform Engle’s ARCH test using the 
function archtest. This test also shows significant evidence in support of 
GARCH effects (i.e., heteroscedasticity).

[H,pValue,Stat,CriticalValue] = ...
      archtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]

ans =
    1.0000         0  192.3783   18.3070
    1.0000         0  201.4652   24.9958
    1.0000         0  203.3018   31.4104

Each of these examples extracts the sample mean from the actual returns. 
This is consistent with the definition of the conditional mean equation of the 
default model, in which the innovations process is , and  is the 
mean of .

Parameter Estimation
This section continues the example begun in “Preestimation Analysis” on 
page 2-15. It estimates model parameters, then examines the estimated 
GARCH model.

1 Estimate the Model Parameters. The presence of heteroscedasticity, 
shown in the previous analysis, indicates that GARCH modeling is 
appropriate. Use the estimation function garchfit to estimate the model 
parameters. Assume the default GARCH model described in the section 
“The Default Model” on page 2-12. This only requires that you specify the 
return series of interest as an argument to the function garchfit. 

εt yt C–= C
yt
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Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Note  Because the default value of the Display parameter in the specification 
structure is 'on', garchfit prints diagnostic optimization and summary 
information to the command window in the example below. (See fmincon in 
the Optimization Toolbox for information about the output of the Display 
parameter.) 

[coeff,errors,LLF,innovations,sigmas,summary] = ...
       garchfit(dem2gbp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables: 4

Functions 
 Objective:                            garchllfn
 Gradient:                             finite-differencing
 Hessian:                              finite-differencing (or Quasi-Newton)
 Nonlinear constraints:                armanlc
 Gradient of nonlinear constraints:    finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints:   0
 
 Number of linear inequality constraints:    1
 Number of linear equality constraints:      0
 Number of lower bound constraints:          4
 Number of upper bound constraints:          4

Algorithm selected
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   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                           max                 Directional   First-order 
 Iter F-count    f(x)   constraint  Step-size   derivative   optimality  Procedure 
  1     28   -7916.01   -2.01e-006  7.63e-006          857    1.42e+005   
  2     36   -7959.65  -1.508e-006       0.25          389     9.8e+007   
  3     45   -7963.98  -3.113e-006      0.125          131    5.29e+006   
  4     52   -7965.59  -1.586e-006        0.5         55.9    4.45e+007   
  5     65    -7966.9  -1.574e-006    0.00781          101    1.46e+007   
  6     74   -7969.46  -2.201e-006      0.125         14.9    2.77e+007   
  7     83   -7973.56  -2.663e-006      0.125         36.6    1.45e+007   
  8     90   -7982.09  -1.332e-006        0.5        -6.39    5.59e+006   
  9    103   -7982.13  -1.399e-006    0.00781         6.49    1.32e+006   
 10    111   -7982.53  -1.049e-006       0.25         12.5    1.87e+007   
 11    120   -7982.56  -1.186e-006      0.125         3.72     3.8e+006   
 12    128   -7983.69   -1.11e-006       0.25        0.184    4.91e+006   
 13    134   -7983.91  -7.813e-007          1        0.732    1.22e+006   
 14    140   -7983.98  -9.265e-007          1        0.186    1.17e+006   
 15    146      -7984  -8.723e-007          1       0.0427    9.52e+005   
 16    154      -7984  -8.775e-007       0.25       0.0152    6.33e+005   
 17    160      -7984   -8.75e-007          1      0.00197    6.98e+005   
 18    166      -7984  -8.763e-007          1     0.000931    7.38e+005   
 19    173      -7984  -8.759e-007        0.5     0.000469    7.37e+005   
 20    179      -7984  -8.761e-007          1      0.00012    7.22e+005   
 21    199      -7984  -8.761e-007  -6.1e-005       0.0167    7.37e+005  Hessian modified twice
 22    213      -7984  -8.761e-007    0.00391      0.00582    7.26e+005  Hessian modified twice
  Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
 No Active Constraints

2 Examine the Estimated GARCH Model. Now that the estimation is 
complete, you can display the parameter estimates and their standard 
errors using the function garchdisp,

garchdisp(coeff,errors)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Parameters Estimated: 4
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                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
          C    -6.1919e-005   8.4331e-005     -0.7342
          K    1.0761e-006    1.323e-007       8.1341
   GARCH(1)    0.80598        0.016561        48.6685
    ARCH(1)    0.15313        0.013974        10.9586

If you substitute these estimates in the definition of the default model, 
Eq. (2-7) and Eq. (2-8), the estimation process implies that the constant 
conditional mean/GARCH(1,1) conditional variance model that best fits the 
observed data is

where = GARCH(1) = 0.80598 and = ARCH(1) = 0.15313. In 
addition, = C = -6.1919e-005 and = K = 1.0761e-006.

Postestimation Analysis
The postestimation analysis continues the example begun in “Preestimation 
Analysis” on page 2-15 and continued in “Parameter Estimation” on page 2-23. 
This part of the example starts by comparing the residuals, conditional 
standard deviations, and returns. It then uses plots and quantitative 
techniques to compare correlation of the standardized innovations. 

1 Compare the Residuals, Conditional Standard Deviations, and Returns. 
In addition to the parameter estimates and standard errors, garchfit also 
returns the optimized log-likelihood function value (LLF), the residuals 
(innovations), and conditional standard deviations (sigmas). Use the 
function garchplot to inspect the relationship between the innovations (i.e., 
residuals) derived from the fitted model, the corresponding conditional 
standard deviations, and the observed returns. 

garchplot(innovations,sigmas,dem2gbp)

yt 6.1919e-005– εt+=

σt
2

1.0761e-006 0.80598σt 1–
2

0.15313εt 1–
2

+ +=

G1 A1
C κ
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Notice that both the innovations (top plot) and the returns (bottom plot) 
exhibit volatility clustering. Also, notice that the sum, 

= 0.80598 + 0.15313, is 0.95911, which is close to the integrated, 
nonstationary boundary given by the constraints associated with Eq. (2-4).

2 Plot and Compare the Correlation of the Standardized Innovations.  
Although the figure in step 1 shows that the fitted innovations exhibit 
volatility clustering, if you plot the standardized innovations (the 
innovations divided by their conditional standard deviation), they appear 
generally stable with little clustering.

plot(innovations./sigmas)
ylabel('Innovation')
title('Standardized Innovations')

0 500 1000 1500 2000
−0.05

0

0.05
Innovations

In
no

va
tio

n

0 500 1000 1500 2000
0

0.005

0.01

0.015
Conditional Standard Deviations

S
ta

nd
ar

d 
D

ev
ia

tio
n

0 500 1000 1500 2000
−0.05

0

0.05
Returns

R
et

ur
n

G1 A1+



2 GARCH Overview

2-28

If you plot the ACF of the squared standardized innovations, they also show 
no correlation.

autocorr((innovations./sigmas).^2)
title('ACF of the Squared Standardized Innovations')
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Now compare the ACF of the squared standardized innovations in this 
figure to the ACF of the squared returns prior to fitting the default model 
(See “Preestimation Analysis” on page 2-15, step 4). The comparison shows 
that the default model sufficiently explains the heteroscedasticity in the raw 
returns.

3 Quantify and Compare Correlation of the Standardized Innovations. 
Compare the results below of the Q-test and the ARCH test with the results 
of these same tests in the preestimation analysis. In the preestimation 
analysis, both the Q-test and the ARCH test indicate rejection (H = 1 with 
pValue = 0) of their respective null hypotheses, showing significant 
evidence in support of GARCH effects. In the postestimate analysis, using 
standardized innovations based on the estimated model, these same tests 
indicate acceptance (H = 0 with highly significant pValues) of their 
respective null hypotheses and confirm the explanatory power of the default 
model.

[H, pValue,Stat,CriticalValue] = ...
    lbqtest((innovations./sigmas).^2,[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]
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ans =
         0    0.5262    9.0626   18.3070
         0    0.3769   16.0777   24.9958
         0    0.6198   17.5072   31.4104

[H, pValue, Stat, CriticalValue] = ...
    archtest(innovations./sigmas,[10 15 20]',0.05);
[H  pValue  Stat  CriticalValue]

ans =
         0    0.5625    8.6823   18.3070
         0    0.4408   15.1478   24.9958
         0    0.6943   16.3557   31.4104
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GARCH Specification 
Structure

Introduction (p. 3-2) Introduces the GARCH specification structure and explains 
how the primary analysis and modeling functions operate on 
the structure.

Equation Variables and Parameter 
Names (p. 3-4)

Associates the variables used in the model equations 
(“Conditional Mean and Variance Models” on page 2-6) with 
their corresponding parameters in the specification 
structure.

Examples of Specification Structures 
(p. 3-5)

Uses examples of specification structures to interpret their 
contents. 

Reading and Writing Specification 
Structures (p. 3-8)

Describes the creation and modification of a specification 
structure, as well as the retrieval of values from it. 
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Introduction
The GARCH Toolbox maintains the parameters that define a model and control 
the estimation process in a specification structure. 

For the default model (see “The Default Model” on page 2-12), garchfit can 
create the specification structure and store the model orders and estimated 
parameters in it. For more complex models, you must use the function 
garchset to explicitly specify, in a specification structure, the conditional 
variance model you want, the mean and variance model orders, and possibly 
the initial coefficient estimates. 

The primary analysis and modeling functions, garchfit, garchpred, and 
garchsim, all operate on the specification structure. This table describes how 
each function uses the specification structure. 

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters of a 
conditional mean specification of 
ARMAX form and a conditional 
variance specification of GARCH, 
GJR, or EGARCH form.

Input. Optionally accepts a GARCH 
specification structure as input. If the 
structure contains the model orders (R, M, P, Q) 
but no coefficient vectors (C, AR, MA, Regress, K, 
ARCH, GARCH, Leverage), garchfit uses 
maximum likelihood to estimate the 
coefficients for the specified mean and 
variance models. If the structure contains 
coefficient vectors, garchfit uses them as 
initial estimates for further refinement. If you 
provide no specification structure, garchfit 
assumes, and returns, a specification 
structure for the default model (see “The 
Default Model” on page 2-12). 

Output. Returns a specification structure that 
contains a fully specified ARMAX/GARCH 
model.
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Note  See the garchset function reference page for descriptions of all the 
specification structure parameters.

garchpred Provides 
minimum-mean-square-error 
(MMSE) forecasts of the 
conditional mean and standard 
deviation of a return series, for a 
specified number of periods into 
the future. 

Input. Requires a GARCH specification 
structure that contains the coefficient vectors 
for the model for which garchpred is to 
forecast the conditional mean and standard 
deviation.

Output. garchpred does not modify or return 
the specification structure.

garchsim Uses Monte Carlo methods to 
simulate sample paths for return 
series, innovations, and 
conditional standard deviation 
processes. 

Input. Requires a GARCH specification 
structure that contains the coefficient vectors 
for the model for which garchsim is to 
simulate sample paths.

Output. garchsim does not modify or return 
the specification structure.

Function Description Use of GARCH Specification Structure
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Equation Variables and Parameter Names
For the most part, the names of specification structure parameters that define 
the ARMAX and GARCH models reflect the variable names of their 
corresponding components in the conditional mean and variance model 
equations (see “Conditional Mean and Variance Models” on page 2-6).

Conditional Mean Model
In the conditional mean model,

• R and M represent the order of the ARMA(R,M) conditional mean model. 

• C represents the constant .

• AR represents the R-element autoregressive coefficient vector .

• MA represents the M-element moving average coefficient vector .

• Regress represents the regression coefficients .

Unlike the other components of the conditional mean equation,  has no 
representation in the GARCH specification structure.  is an optional matrix 
of returns that some toolbox functions use as explanatory variables in the 
regression component of the conditional mean. For example,  could contain 
return series of a suitable market index collected over the same period as the 
return series . Toolbox functions that allow the use of a regression matrix 
provide a separate argument by which you can specify it. 

Conditional Variance Models
In the conditional variance models

• P and Q represent the order of the GARCH(P,Q), GJR(P,Q), or EGARCH(P,Q) 
conditional variance model. 

• K represents the constant .

• GARCH represents the P-element coefficient vector .

• ARCH represents the Q-element coefficient vector .

• Leverage represents the Q-element leverage coefficient vector, , for 
asymmetric EGARCH(P,Q) and GJR(P,Q) models.
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Examples of Specification Structures
The following example shows the fields of the specification structure, coeff, for 
the estimated default model from “Analysis and Estimation Example Using the 
Default Model” on page 2-15. The term to the left of the colon (:) is the 
parameter name.

coeff

coeff =
          Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: -6.1919e-005
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 1.0761e-006
            GARCH: 0.8060
             ARCH: 0.1531

When you display a specification structure, only the fields that are applicable 
to the specified model are displayed. Notice that R = M = 0 for this model, and 
so are not displayed.

By default, the Comment field shown above is automatically generated by 
garchset and garchfit. It summarizes the ARMAX and GARCH models used 
for the conditional mean and variance equations. You can use garchset to set 
the value of the Comment field, but the value you give it will replace this 
summary statement.

Following is the display for the MA(1)/GJR(1,1) estimated model from the 
example “Specifying Presample Data” on page 5-19. Notice that 
length(MA) = M, length(GARCH) = P, and length(ARCH) = Q.

coeff = 
          Comment: 'Mean: ARMAX(0,1,0); Variance: GJR(1,1)'
     Distribution: 'Gaussian'
                M: 1
                C: 5.6403e-004
               MA: 0.2501
    VarianceModel: 'GJR'
                P: 1
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                Q: 1
                K: 1.1907e-005
            GARCH: 0.6945
             ARCH: 0.0249
         Leverage: 0.2454
          Display: 'off'

If you had created the specification structure for the same MA(1)/GJR(1,1) 
example, but had not yet estimated the model coefficients, this is what you 
would see if you displayed the specification structure.

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
       'Display','off')

spec = 
          Comment: 'Mean: ARMAX(0,1,?); Variance: GJR(1,1)'
     Distribution: 'Gaussian'
                M: 1
                C: []
               MA: []
    VarianceModel: 'GJR'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []
         Leverage: []
          Display: 'off'

The empty matrix symbols, [], indicate that these fields are required for the 
specified model, but have not yet been assigned values. For the specification to 
be complete, these fields must be assigned valid values. You can use garchset 
to assign values, e.g., as initial parameter estimates, to these fields. You can 
also pass such a specification structure to garchfit, which uses the 
parameters it estimates to complete the model specification. You cannot pass 
such a structure to garchsim, garchinfer, or garchpred. These functions 
require complete specifications.
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Note  See the garchset function reference page for descriptions of all the 
specification structure fields.
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Reading and Writing Specification Structures
This section discusses

• “Creating and Modifying a Specification Structure” on page 3-8

• “Retrieving Specification Structure Values” on page 3-11

Creating and Modifying a Specification Structure
In general, you must use the function garchset to initially create a 
specification structure that, at a minimum, contains the chosen variance model 
and the mean and variance model orders. The only exception is the default 
model, for which garchfit can create a specification structure. The model 
parameters you provide must specify a valid model. 

When you create a specification structure, you can specify both the conditional 
mean and variance models. Alternatively, you can specify either the 
conditional mean or the conditional variance model. If you do not specify both 
models, garchset assigns default parameters to the one you did not specify. For 
the conditional mean, the default is a constant ARMA(0,0,?) model. For the 
conditional variance, the default is a constant GARCH(0,0) model. The 
question mark (?) indicates that garchset doesn’t know if you intend to include 
a regression component (see “Regression Components in Conditional Mean 
Models” on page 7-1).

The following examples create specification structures and display the results. 
Note that you only need to type the leading characters that uniquely identify 
the parameter. As illustrated here, garchset ignores case for parameter 
names.

The Default Model
This is a sampling of statements that all create specification structures for the 
default model. 

spec = garchset('R',0,'m',0,'P',1,'Q',1);

spec = garchset('p',1,'Q',1);

spec = garchset;



Reading and Writing Specification Structures

3-9

The output of each command is the same. The Comment field summarizes the 
model. Because R = M = 0, the fields R, M, AR, and MA are not displayed.

spec = 
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: []
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []

ARMA(0,0)/GJR(1,1)
This command accepts the constant default for the mean model. 

spec = garchset('VarianceModel','GJR','P',1,'Q',1)

spec = 
          Comment: 'Mean: ARMAX(0,0,?); Variance: GJR(1,1)'
     Distribution: 'Gaussian'
                C: []
    VarianceModel: 'GJR'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []
         Leverage: []

AR(2)/GARCH(1,2) with Initial Parameter Estimates
For this command, garchset infers the model orders from the lengths of the 
coefficient vectors. garchset assumes a GARCH(P,Q) conditional variance 
process as the default.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,... 
                'GARCH',0.8,'ARCH',[0.1 0.05])
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spec = 

          Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
     Distribution: 'Gaussian'
                R: 2
                C: 0
               AR: [0.5000 -0.8000]
    VarianceModel: 'GARCH'
                P: 1
                Q: 2
                K: 2.0000e-004
            GARCH: 0.8000
             ARCH: [0.1000 0.0500]

Modifying a Specification Structure
This command creates an initial structure, and then updates the existing 
structure with additional parameter/value pairs. At each step the result must 
be a valid specification structure.

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1);
spec = garchset(spec,'R',1,'Distribution','T')

spec = 
          Comment: 'Mean: ARMAX(1,1,?); Variance: EGARCH(1,1)'
     Distribution: 'T'
              DoF: []
                R: 1
                M: 1
                C: []
               AR: []
               MA: []
    VarianceModel: 'EGARCH'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []
         Leverage: []
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Retrieving Specification Structure Values
The function garchget retrieves the values of the specification structure fields.

This example creates a specification structure, spec, by providing the model 
coefficients, and allowing garchset to infer the model orders from the lengths 
of these vectors. garchset assumes the GARCH(P,Q) default variance model. 
The example then uses garchget to retrieve the variance model and the model 
orders for the conditional mean. Note that you only need to type the leading 
characters that uniquely identify the parameter. As illustrated here, garchget 
ignores case for parameter names.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,... 
                'GARCH',0.8,'ARCH',[0.1 0.05])
spec = 

          Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
     Distribution: 'Gaussian'
                R: 2
                C: 0
               AR: [0.5000 -0.8000]
    VarianceModel: 'GARCH'
                P: 1
                Q: 2
                K: 2.0000e-004
            GARCH: 0.8000
             ARCH: [0.1000 0.0500]

R = garchget(spec,'R')

R =
      2

M = garchget(spec,'m')

M =
      0

var = garchget(spec,'VarianceModel')

var =
      GARCH
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Simulation

Simulating Sample Paths (p. 4-2) Shows you how to simulate single and multiple paths for 
return series, innovations, and conditional standard 
deviation processes.

Presample Data (p. 4-6) Explains the use of automatically generated and 
user-supplied presample data. For automatically generated 
presample data, this section also discusses response 
tolerance and the minimization of transient effects.
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Simulating Sample Paths
• “Introduction” on page 4-2

• “Simulating a Single Path” on page 4-3

• “Simulating Multiple Paths” on page 4-5

Introduction
Given models for the conditional mean and variance (see “Conditional Mean 
and Variance Models” on page 2-6), the function garchsim can simulate one or 
more sample paths for return series, innovations, and conditional standard 
deviation processes. 

The section “Analysis and Estimation Example Using the Default Model” on 
page 2-15 uses the default GARCH(1,1) model to model the 
Deutschmark/British pound foreign exchange series. These examples use the 
resulting model 

to simulate sample paths for return series, innovations, and conditional 
standard deviation processes. 

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Use the following commands to restore your workspace if necessary. The text 
of this example omits the display output of the estimation to save space.

load garchdata
dem2gbp = price2ret(DEM2GBP);

yt 6.1919e-005– εt+=

σt
2

1.0761e-006 0.80598σt 1–
2

0.15313εt 1–
2

+ +=



Simulating Sample Paths

4-3

[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
coeff

coeff = 
          Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: -6.1919e-005
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 1.0761e-006
            GARCH: 0.8060
             ARCH: 0.1531

Simulating a Single Path
This code generates a single path of 1000 observations starting from the initial 
MATLAB random number generator state. Assuming there are 250 trading 
days per year, this is roughly fours years’ worth of daily data. (“Introduction” 
on page 4-2 tells you how to generate coeff for use in this example.)

randn('state',0);
rand('state',0);
[e,s,y] = garchsim(coeff,1000);

The Workspace Browser shows the result to be a single realization of 1000 
observations each for the innovations , conditional standard deviations 

, and returns  processes. These processes are designated by the 
output variables e, s, and y, respectively. 

εt{ }
σt{ } yt{ }
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Now plot the garchsim output data to see what it looks like.

garchplot(e,s,y)
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Note  If you do not specify the number of observations, the default is 100. For 
example, [e,s,y] = garchsim(coeff) produces a single path of 100 
observations. 

Simulating Multiple Paths
In some cases, you may need multiple realizations. This example uses the same 
model to simulate 1000 paths of 200 observations each. (“Introduction” on 
page 4-2 tells you how to generate coeff for use in this example.)

[e,s,y] = garchsim(coeff,200,1000);

In this example, the , , and  processes are 200-by-1000 element 
matrices. These are relatively large arrays, and demand large chunks of 
memory. In fact, because of the way the GARCH Toolbox manages transients, 
simulating this data requires more memory than the 4800000 bytes indicated 
in the Workspace Browser. (See “Automatically Generated Presample Data” on 
page 4-6 for more information about transients.)

εt{ } σt{ } yt{ }
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Presample Data
Because the mean equation and the variance equations can be recursive in 
nature, they require initial, or presample, data to initiate the simulation. You 
can use one of these methods.

• “Automatically Generated Presample Data” on page 4-6

• “User-Specified Presample Data” on page 4-11

Automatically Generated Presample Data
When you allow garchsim to automatically generate the required initial data, 

• garchsim performs independent path simulation. That is, all simulated 
realizations are unique in that they evolve independently and share no 
common presample conditioning data.

• garchsim generates the presample data in a way that minimizes transient 
effects in the output processes.

Automatic Minimization of Transient Effects
garchsim generates output processes in (approximately) steady state by 
attempting to eliminate transients in the data it simulates. garchsim first 
estimates the number of observations needed for the transients to decay to 
some arbitrarily small value, subject to a 10000 observation maximum. It then 
generates a number of observations equal to the sum of this estimated value 
and the number of observations you request. garchsim then ignores the earlier 
estimated number of initial observations needed for the transients to decay 
sufficiently, and returns only the requested number of later observations.

To do this, garchsim interprets a GARCH(P,Q) or GJR(P,Q) conditional 
variance process as an ARMA(max(P,Q),P) model for the squared innovations, 
and interprets an EGARCH(P,Q) process as an ARMA(P,Q) model for the log of 
the conditional variance. (See, for example, Bollerslev [4], p.310.) garchsim 
then interprets the ARMA model as the correlated output of a linear filter and 
estimates its impulse response by finding the magnitude of the largest 
eigenvalue of its autoregressive polynomial. Based on this eigenvalue, 
garchsim estimates the number of observations, subject to a 10000 maximum, 
needed for the magnitude of the impulse response, which begins at 1, to decay 
below the default response tolerance 0.01 (i.e., 1 percent). If the conditional 
mean has an ARMA(R,M) component, then garchsim also estimates the 
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number of observations needed for the impulse response to decay below the 
response tolerance. This number is also subject to a 10000 maximum.

The effect of transients in the simulation process parallels that in the 
estimation, or inference, process. “Presample Data and Transient Effects” on 
page 5-23 provides an example of transient effects in the estimation process.

Specifying a Scalar Response Tolerance
If you want to use a response tolerance other than the default 0.01, you can 
specify it via the Tolerance argument. This example compares simulated 
observations generated using the default response tolerance, 0.01, and a larger 
tolerance 0.05. It uses the model from “Simulating Sample Paths” on page 4-2.

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Start by simulating a single path of 200 observations using the default 
tolerance 0.01, and setting the scalar integer random generator state to its 
initial state 0.

[e1,s1,y1] = garchsim(coeff,200,1,0);
garchplot(e1,s1,y1)
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Now repeat the simulation, but specify the scalar Tolerance argument as 0.05.

[e5,s5,y5] = garchsim(coeff,200,1,0,[],0.05);
garchplot(e5,s5,y5)
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The observations generated using the 0.05 response tolerance are the same as 
those generated for the default 0.01 tolerance, but shifted to the right. This is 
because it took fewer observations for the magnitude of the impulse response 
to decay below the larger 0.05 tolerance. If you make the Tolerance smaller 
than 0.01, note that garchsim might have to generate more observations and 
could conceivably reach the 10000 observation transient decay period 
maximum or run out of memory.

Storage Considerations
Depending on the values of the parameters in the simulated conditional mean 
and variance models, you may need long presample periods for the transients 
to die out. Although the simulation outputs may be relatively small matrices, 
the initial computation of these transients can result in a large memory burden 
and seriously impact performance. Because of this, garchsim imposes a 
maximum of 10000 observations to the transient decay period of each 
realization. The example in “Simulating Multiple Paths” on page 4-5, which 
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simulates three 200-by-1000 element arrays, requires intermediate storage for 
far more than 200 observations.

Other Ways to Minimize Transient Effects
If you suspect that transients persist in the simulated data garchsim returns, 
you can use one of these methods to minimize their effect: 

• “Oversampling” on page 4-10

• “Recycling Outputs” on page 4-11

Oversampling. Generate samples that are larger than you need, and delete 
observations from the beginning of each output series. For example, suppose 
you would like to simulate 10 independent paths of 1000 observations each for 

, , and  starting from a known scalar random number state 
(12345). 

Start by generating 1200 observations. garchsim generates sufficient 
presample data so that it can ignore initial samples that might be affected by 
transients. It then returns only the requested 1200 later observations.

[e,s,y] =  garchsim(coeff,1200,10,12345);

Further minimize the effect of transients by retaining only the last 1000 
observations of interest.

e = e(end-999:end,:);
s = s(end-999:end,:);
y = y(end-999:end,:);

εt{ } σt{ } yt{ }
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Note  The example above also illustrates how to specify a scalar random 
number generator state. This use corresponds to the rand and randn syntaxes, 
rand('state',j) and randn('state',j).

Recycling Outputs. Start by simulating the desired number of observations 
without explicitly providing presample data i.e., let garchsim automatically 
generate the presample data. Then simulate again, using the simulated 
observations as the presample data. You can repeat this process until you are 
satisfied that transient effects have been sufficiently eliminated. See 
“User-Specified Presample Data” on page 4-11 for information about supplying 
presample data.

User-Specified Presample Data
Use the time-series input arrays PreInnovations, PreSigmas, and PreSeries 
to explicitly specify all required presample data. These presample arrays are 
associated with the garchsim outputs Innovations, Sigmas, and Series, 
respectively. When specified, garchsim uses these presample arrays to initiate 
the filtering process and form the conditioning set upon which the simulated 
realizations are based.

The PreInnovations, PreSigmas, and PreSeries arrays, as well as their 
associated outputs, are column-oriented arrays in which each column is 
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associated with a distinct realization, or sample path. The first row of each 
array stores the oldest data and the last row the most recent. 

Note that you can specify PreInnovations, PreSigmas, and PreSeries as 
matrices (i.e., with multiple columns), or as single-column vectors. In either 
case, the following table summarizes the minimum number of rows required to 
successfully initiate the simulation process.
 

If you specify PreInnovations, PreSigmas, and PreSeries as matrices, 
garchsim uses each column to initiate simulation of the corresponding column 
of the Innovations, Sigmas, and Series outputs. Each of the presample inputs 
must have NUMPATHS columns. 

If you specify PreInnovations, PreSigmas, and PreSeries as column vectors, 
and NUMPATHS is greater than 1, garchsim performs dependent path 
simulation. That is, garchsim applies the same vector to each column of the 
corresponding Innovations, Sigmas, and Series outputs. All simulated sample 
paths share a common conditioning set. Although all realizations evolve 
independently, they share common presample conditioning data. Dependent 
path simulation enables the simulated sample paths to evolve from a common 
starting point, and allows Monte Carlo simulation of forecasts and forecast 
error distributions. See “Advanced Example” on page 9-1.

If you specify at least one set, but fewer than three sets, of presample data, 
garchsim does not attempt to derive presample observations for those you omit. 
If you specify your own presample data, you must specify all that are necessary 
for the specified conditional mean and variance models. See the example 
“Specifying Presample Data” on page 5-19.

Minimum Number of Rows

garchsim Input 
Argument

GARCH(P,Q), 
GJR(P,Q)

EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

PreSigmas P max(P,Q)

PreSeries R R
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Note  You can also use the garchsim input argument State to specify your 
own standardized noise process. See the garchsim reference page for details.
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5

Estimation

Maximum Likelihood 
Estimation (p. 5-2)

Explains how the estimation engine, garchfit, uses maximum 
likelihood to estimate the parameters needed to fit the specified 
models to a given univariate return series.

Initial Parameter Estimates 
(p. 5-4)

Describes the use of both user-supplied and automatically generated 
initial parameter estimates. It also explains how garchfit uses 
parameter bounds to provide stability in the optimization process.

Presample Observations 
(p. 5-11)

Explains how garchfit calculates automatically generated 
presample data for the conditional mean model and for each of the 
supported conditional variance models. It also explains how to 
specify your own presample data.

Termination Criteria and 
Optimization Results (p. 5-13)

Discusses the optimization parameters that enable you to influence 
the optimization process.

Examples (p. 5-19) Illustrates presample data, transient effects, and lower bound 
constraints. It also offers an alternative technique for estimating 
ARMA(R,M) parameters.
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Maximum Likelihood Estimation
Given models for the conditional mean and variance (see “Conditional Mean 
and Variance Models” on page 2-6), and an observed univariate return series, 
the estimation engine garchfit infers the innovations (i.e., residuals) from the 
return series, and estimates, by maximum likelihood, the parameters needed 
to fit the specified models to the return series.

garchfit calls the Optimization Toolbox function fmincon to perform 
constrained optimization of a scalar function of several variables, i.e., the 
log-likelihood function, given a vector of initial parameter estimates (see 
“Initial Parameter Estimates” on page 5-4). This is generally referred to as 
constrained nonlinear optimization or nonlinear programming. In turn, 
fmincon calls the appropriate log-likelihood objective function to estimate the 
model parameters via maximum likelihood estimation (MLE). The chosen 
log-likelihood objective function proceeds in three steps: 

1 Given the vector of current parameter values and the observed data Series, 
the log-likelihood function infers the process innovations (i.e., residuals) by 
inverse filtering. This inference, or inverse filtering, operation rearranges 
the conditional mean equation to solve for the current innovation, :

This equation is a whitening filter, transforming a (possibly) correlated 
process  into an uncorrelated white noise process .

2 The log-likelihood function then uses the inferred innovations  to infer the 
corresponding conditional variances  via recursive substitution into the 
model-dependent conditional variance equations (Eq. (2-4), Eq. (2-5), 
Eq. (2-6)) above.

3 Finally, the function uses the inferred innovations and conditional variances 
to evaluate the appropriate log-likelihood objective function. If  is 
Gaussian, the log-likelihood function is 

εt

εt C– yt φiyt i–
i 1=

R

∑– θjεt j–

j 1=

M

∑– βkX t k,( )
k 1=

Nx
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yt εt

εt
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εt
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(5-1)

If  is Student’s t, the log-likelihood function is

(5-2)

where  is the sample size, i.e., the number of rows in the series . The 
degrees of freedom  must be greater than 2.

Notice that the conditional mean equation (Eq. (2-2)) and the conditional 
variance equations (Eq. (2-4), Eq. (2-5), and Eq. (2-6)) are recursive and, in 
general, require presample observations to initiate the inverse filtering. For 
this reason, the objective functions shown above are referred to as conditional 
log-likelihood functions. That is, evaluation of the log-likelihood function is 
conditioned, or based, on a set of presample observations. The methods used to 
specify these presample observations are discussed in “Presample 
Observations” on page 5-11.

The iterative numerical optimization repeats the three steps described above 
until suitable termination criteria are reached. See “Termination Criteria and 
Optimization Results” on page 5-13 for details.
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Initial Parameter Estimates
The constrained nonlinear optimizer, fmincon, requires a vector of initial 
parameter estimates. Although garchfit computes initial parameter 
estimates if you provide none, at times it may be helpful to compute and specify 
your own initial guesses to avoid convergence problems. 

This section discusses

• “User-Specified Initial Estimates” on page 5-4

• “Automatically Generated Initial Estimates” on page 5-5

• “Parameter Bounds” on page 5-9

User-Specified Initial Estimates
You can specify complete initial estimates for either or both the conditional 
mean equation and the conditional variance equation. 

For the conditional mean estimates to be complete, you must specify the C, AR, 
and MA parameters, consistent with the orders you specified for R and M; i.e., the 
length of AR must be R, and the length of MA must be M. You must also specify 
the Regress parameter if you provide a regression matrix . C, AR, MA, and 
Regress correspond respectively to , , , and  in Eq. (2-2).

Note  To remove the constant  from the conditional mean model, i.e., to fix 
C = 0 without providing initial parameter estimates for the remaining 
parameters, set C = NaN (Not-a-Number). In this case, the value of FixC has 
no effect.

For the conditional variance estimates to be complete, you must specify the K, 
GARCH, and ARCH specification structure parameters for all conditional variance 
models, consistent with the orders you specified for P and Q; i.e., the length of 
GARCH must be P, and the length of ARCH must be Q. You must also specify the 
Leverage parameter for GJR and EGARCH conditional variance models. The 
parameters K, GARCH, ARCH, and Leverage correspond respectively to , , 

,and  in Eq. (2-4), Eq. (2-5), and Eq. (2-6).

You can use garchset to create the necessary specification structure, Spec, or 
you can modify the Coeff structure returned by a previous call to garchfit. 

X
C φj θi βk

C

κ Gi
Aj Lj
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If you provide initial parameter estimates for a model equation, you must 
provide all the estimated constants and coefficients consistent with the 
specified model orders. For example, for an ARMA(2,2) model with no 
regression matrix, you must specify the parameters C, AR, and MA. If you specify 
only MA, the specification is incomplete, and garchfit ignores the MA you 
specified and automatically generates all the requisite initial estimates.

The following specification structure provides C and AR as initial parameter 
estimates, but does not provide MA, even though M = 1. In this case, garchfit 
ignores the C and AR fields, computes initial parameter estimates, and 
overwrites any existing parameters in the incomplete conditional mean 
specification.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,...
                'P',1,'Q',1,'K',0.0005,'GARCH',0.8,'ARCH',0.1)
spec = 

         Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                R: 1
                M: 1
                C: 0
               AR: 0.5000
               MA: []
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 5.0000e-004
            GARCH: 0.8000
             ARCH: 0.1000

However, since the structure explicitly sets all fields in the conditional 
variance model, garchfit uses the specified values of K, GARCH, and ARCH as 
initial estimates subject to further refinement.

Automatically Generated Initial Estimates
If you do not provide initial coefficient estimates for a conditional mean or 
variance model, or if the estimates you provide are incomplete, garchfit 
automatically generates initial estimates. It first estimates the conditional 
mean parameters, if necessary, then estimates the conditional variance 
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parameters, if necessary. Again, note that garchfit ignores any incomplete 
initial estimates. garchfit estimates initial conditional mean parameters 
using standard statistical time-series techniques, dependent upon the 
parametric form of the conditional mean equation.

• “Conditional Mean Models Without a Regression Component” on page 5-6

• “Conditional Mean Models with a Regression Component” on page 5-6

• “Conditional Variance Models” on page 5-7

Conditional Mean Models Without a Regression Component

ARMA Models. Initial parameter estimates of general ARMA(R,M) conditional 
mean models are estimated by the three-step method outlined in Box, Jenkins, 
and Reinsel [8], Appendix A6.2.

1 garchfit estimates the autoregressive coefficients, , by computing the 
sample autocovariance matrix and solving the Yule-Walker equations. 

2 Using these estimated coefficients, garchfit filters the observed Series to 
obtain a pure moving average process. 

3 garchfit computes the autocovariance sequence of the moving average 
process, and uses it to iteratively estimate the moving average 
coefficients, . This last step also provides an estimate of the unconditional 
variance of the innovations.

Conditional Mean Models with a Regression Component

ARX Models (No Moving Average Terms Allowed). Initial estimates of the 
autoregressive coefficients, , and the regression coefficients, , of the 
explanatory data matrix, , are generated by ordinary least squares 
regression. 

See “Regression Components in Conditional Mean Models” on page 7-1 for 
more information.

ARMAX Models (Moving Average Terms Included). Initial parameter estimation of the 
general ARMAX conditional mean models requires two steps: 

1 garchfit estimates an ARX model by ordinary least squares.

φj

θi

φj βk
X
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2 garchfit estimates an MA(M) = ARMA(0,M) model as outlined in 
“Conditional Mean Models Without a Regression Component” on page 5-6.

Conditional Variance Models
As opposed to conditional mean parameters, initial estimates of conditional 
variance parameters are based on empirical analysis of financial time series, 
and are thus ad hoc. The approach is dependent upon the conditional variance 
model you select.

GARCH(P,Q) Models. For GARCH models, garchfit assumes that the sum of the 
 and the  is close to 1. Specifically, for a 

general GARCH(P,Q) model (Eq. (2-4)), garchfit assumes that

If  (i.e., lagged conditional variances are included), then garchfit equally 
allocates 0.85 out of the available 0.90 to the  GARCH coefficients, and 
allocates the remaining 0.05 equally among the  ARCH coefficients.  
specifies an ARCH(Q) model in which garchfit allocates 0.90 equally to the  
ARCH terms. Some examples will clarify the approach.

The GARCH(1,1) model is by far the most common, and initial estimates are 
expressed as follows:

A GARCH(2,1) model would be initially expressed as

An ARCH(1) model would be initially expressed as

An ARCH(2) model would be initially expressed as

Finally, garchfit estimates the constant  of the conditional variance model 
by first estimating the unconditional, or time-independent, variance of .
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In terms of the parameters this can also be expressed as

and so

GJR(P,Q) Models. garchfit treats a GJR(P,Q) model, described in Eq. (2-5), as a 
straightforward extension of an equivalent GARCH(P,Q) model with zero 
leverage terms. Thus, initial parameter estimates of GJR models are identical 
to those of equivalent order GARCH models (see “GARCH(P,Q) Models” on 
page 5-7), with the additional assumption that all leverage terms are zero,

EGARCH(P,Q) Models. For EGARCH models garchfit assumes that the sum of 
the  is 0.9, and the sum of the  is 0.2. 
Specifically, for a general EGARCH(P,Q) model (Eq. (2-6)), garchfit assumes 
that

and

If , i.e., lagged conditional variances are included, then garchfit equally 
allocates the available weight of 0.9 to the  GARCH coefficients, and equally 
allocates the available weight of 0.2 to the  ARCH coefficients.
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Recall that, in EGARCH models, the standardized innovation, , serves as the 
forcing variable for both the conditional variance and the error, so that 
volatility clustering (i.e., persistence) is entirely captured by the  terms. In 
other words, EGARCH models make no allowance for the relationship between 
the  and  coefficients regarding initial parameter estimates. Because of 
this, EGARCH(0,Q) models ignore the persistence effect commonly associated 
with financial returns and are somewhat unusual. Some examples clarify the 
approach.

The EGARCH(1,1) model is by far the most common, and initial estimates are 
expressed as:

Initial estimates for an EGARCH(2,2) model are expressed as

An EGARCH(0,1) model would be initially expressed as

As you can see, initial parameter estimates for EGARCH models are most 
effective when .

Finally, you can estimate the constant  of an EGARCH conditional variance 
model by noting the approximate relationship between the unconditional 
variance of the innovations process, , and the  parameters of an 
EGARCH(1,1) model:

Parameter Bounds
garchfit bounds some model parameters to provide stability in the 
optimization process. See the example “Active Lower Bound Constraint” on 
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page 5-28 for more information on overriding these bounds in the unlikely 
event they become active.

Conditional Mean Model
For the conditional mean model, Eq. (2-2), garchfit bounds the conditional 
mean constant  and the conditional mean regression coefficients , if any, 
in the interval [-10,10]. However, if the coefficient estimates, whether provided 
by the user or automatically generated by garchfit, are outside this interval, 
garchfit sets the appropriate lower or upper bound equal to the estimated 
coefficient. 

GARCH(P,Q) and GJR(P,Q) Conditional Variance Models
For GARCH(P,Q) and GJR(P,Q) conditional variance models, Eq. (2-3) and 
Eq. (2-4), garchfit uses 5 as an upper bound for the conditional variance 
constant . However, if the initial estimate is greater than 5, garchfit uses 
the estimated value as the upper bound. 

EGARCH(P,Q) Conditional Variance Model
For EGARCH(P,Q) conditional variance models, Eq. (2-5), garchfit places 
arbitrary bounds on the conditional variance constant , such that . 
However, if the magnitude of the initial estimate is greater than 5, garchfit 
adjusts the bounds accordingly.

C βk

κ

κ 5– κ 5≤ ≤
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Presample Observations
You can explicitly specify all required presample data, or you can allow 
garchfit to automatically generate the necessary presample data. “Maximum 
Likelihood Estimation” on page 5-2 discusses presample data required to 
initiate the inverse filtering and evaluate the conditional log-likelihood 
objective function.

This section discusses

• “User-Specified Presample Observations” on page 5-11

• “Automatically Generated Presample Observations” on page 5-11

User-Specified Presample Observations
Use the time-series column vector inputs PreInnovations, PreSigmas, and 
PreSeries to explicitly specify all required presample data.The following table 
summarizes the minimum number of rows required to successfully initiate the 
optimization process.

If you specify at least one set, but fewer than three sets, of presample data, 
garchfit does not attempt to derive presample observations for those you omit. 
If you specify your own presample data, you must specify all that are necessary 
for the specified conditional mean and variance models. See the example 
“Specifying Presample Data” on page 5-19.

Automatically Generated Presample Observations
If you do not specify any presample data, garchfit automatically generates the 
required presample data. 

Minimum Number of Rows

garchfit Input 
Argument

GARCH(P,Q), 
GJR(P,Q)

EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

PreSigmas P max(P,Q)

PreSeries R R
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Conditional Mean Models
For conditional mean models with an autoregressive component, garchfit 
assigns the R required presample observations (i.e., PreSeries) of  the 
sample mean of Series. For models with a moving-average component, it sets 
the M required presample observations (i.e., PreInnovations) of  to their 
expected value of zero. With this presample data, garchfit can infer the entire 
sequence of innovations for any general ARMAX conditional mean model 
regardless of the conditional variance model you select. 

garchfit attempts to eliminate the effect of transients in the presample data 
it generates. This effect parallels that in the simulation process described in 
“Automatically Generated Presample Data” on page 4-6. The example 
“Presample Data and Transient Effects” on page 5-23 provides an example of 
transient effects in the estimation process.

GARCH(P,Q) Models
Once garchfit computes the innovations, it assigns the sample mean of the 
squared innovations 

to the P and Q required presample observations of  and , respectively. See 
Hamilton [18] and Bollerslev [4].

GJR(P,Q) Models
garchfit also assigns the average squared innovation to all required 
presample observations of  and . In addition, garchfit weights the 
Q presample observations of  associated with the leverage terms by 0.5 (i.e., 
the probability of a negative past residual).

EGARCH(P,Q) Models
garchfit also assigns the average squared innovation to all P presample 
observations of . In addition, it sets all Q presample observations of the 
standardized innovations  to zero and  to the 
mean absolute deviation. This has the effect of setting all Q presample ARCH 
and leverage terms to zero.
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Termination Criteria and Optimization Results
There are several fields in the specification structure that allow you to 
influence the optimization process. In order of importance, these are

This section discusses

• “MaxIter and MaxFunEvals” on page 5-13

• “TolCon, TolFun, and TolX” on page 5-14

• “Convergence” on page 5-14

• “Optimization Results” on page 5-15

• “Constraint Violation Tolerance” on page 5-16

See the Optimization Toolbox documentation and the garchset function for 
additional information about these parameters.

MaxIter and MaxFunEvals
MaxIter is the maximum number of iterations allowed in the estimation 
process. Each iteration involves an optimization phase in which garchfit 
suitably modifies calculations such as line search, gradient, and step size. The 
default value of MaxIter is 400. Although an estimation rarely exceeds 
MaxIter, you can increase the value if you suspect that the estimation 
terminated prematurely.

MaxFunEvals, a field closely related to MaxIter, specifies the maximum number 
of log-likelihood objective function evaluations. The default value is 100 times 
the number of parameters estimated in the model. For example, the default 
model has four parameters, so the default value of MaxFunEvals for the default 
model is 400. When the estimation process terminates prematurely, it is 
usually because MaxFunEvals, rather than MaxIter, is exceeded. You can 

TolCon Termination tolerance on the constraint violation

TolFun Termination tolerance on the function value

TolX Termination tolerance on the parameter estimates

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed
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increase MaxFunEvals if you suspect that the estimation terminated 
prematurely.

The fields MaxFunEvals and MaxIter are purely mechanical in nature. 
Although you may encounter situations in which MaxFunEvals or MaxIter is 
reached, this is rather uncommon. Increasing MaxFunEvals or MaxIter may 
allow successful convergence, but reaching MaxFunEvals or MaxIter is usually 
an indication that your model poorly describes the data; in particular, it often 
indicates that the model is too complicated. Finally, although MaxFunEvals and 
MaxIter can cause the function to stop before a solution is found, they do not 
affect the solution once it is found.

TolCon, TolFun, and TolX
The fields TolCon, TolFun, and TolX are tolerance-related parameters that 
directly influence how and when convergence is achieved, and can also affect 
the solution. 

TolCon is the termination tolerance placed on constraint violations, and 
represents the maximum value by which parameter estimates can violate a 
constraint and still allow successful convergence. See “Conditional Mean and 
Variance Models” on page 2-6 for information about these constraints.

TolFun is the termination tolerance placed on the log-likelihood objective 
function. Successful convergence occurs when the log-likelihood function value 
changes by less than TolFun. See “Optimization Results” on page 5-15 for more 
information.

TolX is the termination tolerance placed on the estimated parameter values. 
Similar to TolFun, successful convergence occurs when the parameter values 
change by less than TolX. See “Optimization Results” on page 5-15 for more 
information.

Convergence
TolFun, and TolX have the same default value, 1e-006. The TolCon default is 
1e-007. If you experience extreme difficulty in convergence (e.g., the 
estimation shows little or no progress, or shows progress but stops early), then 
increasing one or more of these parameter values, for example, from 1e-006 to 
1e-004, may allow the estimation to converge. If the estimation appears to 
converge to a suboptimal solution, then decreasing one or more of these 
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parameter values (e.g., from 1e-006 to 1e-007) may provide more accurate 
parameter estimates. 

Note  You can avoid many convergence difficulties by performing a prefit 
analysis. “Analysis and Estimation Example Using the Default Model” on 
page 2-15 describes graphical techniques, e.g., plotting the return series, and 
examining the ACF and PACF. It also discusses some preliminary tests, 
including Engle’s ARCH test and the Q-test.  

“Model Selection and Analysis” on page 8-1 discusses other tests to help you 
determine the appropriateness of a specific GARCH model. It also explains 
how equality constraints can help you assess parameter significance. “GARCH 
Limitations” on page 1-4 mentions some limitations of GARCH models that 
could affect convergence.

Optimization Results
In contrast to MaxIter and MaxFunEvals, the tolerance fields TolCon, TolFun, 
and TolX do affect the optimization results (see “TolCon, TolFun, and TolX” on 
page 5-14). At successful termination, assuming iterative display is selected, 
you will typically see a message similar to one of the following:

Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation 
is less than options.TolCon

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

Optimization terminated successfully:
First-order optimality measure less than options.TolFun and
maximum constraint violation is less than options.TolCon

Increasing TolFun or TolX from the default of 1e-6 to, for example, 1e-5, 
relaxes one or both of the first two termination criteria, often resulting in a 
slightly less accurate solution. Similarly, decreasing TolFun or TolX to, for 
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example, 1e-7, restricts one or both of the first two termination criteria, often 
resulting in a slightly more accurate solution, but may also require more 
iterations. However, experience has shown that the default value of 1e-6 for 
TolFun and TolX is almost always sufficient, and changing the value is unlikely 
to significantly affect the estimation results for GARCH modeling. For this 
reason, it is recommended that you accept the default value for TolFun and 
TolX.

The GARCH Toolbox default value of TolCon is 1e-7, and changing the value 
of TolCon can significantly affect the solution in situations in which a 
constraint is active. For the GARCH Toolbox, from a practical standpoint, 
TolCon is the most important optimization-related field, and an additional 
discussion of its significance and use is helpful.

Whenever garchfit actively imposes parameter constraints (other than 
user-specified equality constraints) during the estimation process, the 
statistical results based on the maximum likelihood parameter estimates are 
invalid. (See Hamilton [18], page 142.) This is because statistical inference 
relies on the log-likelihood function’s being approximately quadratic in the 
neighborhood of the maximum likelihood parameter estimates. This cannot be 
the case when the estimates fail to fall in the interior of the parameter space.

Constraint Violation Tolerance
At each step in the optimization process, garchfit evaluates the constraints 
described in “Conditional Mean and Variance Models” on page 2-6 against the 
current intermediate solution vector. For each user-specified equality 
constraint, it determines whether or not there is a violation whose absolute 
value is greater than TolCon. For each inequality constraint (including lower 
and upper bounds), it determines whether or not the inequality is violated by 
more than TolCon. If either TolFun or TolX exit condition is satisfied, and if the 
maximum of any violations is less than TolCon, then the optimization 
terminates successfully. (See “TolCon, TolFun, and TolX” on page 5-14.)

Strict Inequality Constraints
For the Optimization Toolbox, the numerical optimizer, fmincon, defines 
inequality constraints as a less than or equal to condition. However, many 
GARCH Toolbox inequality constraints are strict inequalities that specifically 
exclude exact equality. For this reason the GARCH Toolbox interprets TolCon 
differently from the Optimization Toolbox.
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While TolCon applies to both strict inequalities and those that are not strict, 
garchfit provides special handling for strict inequalities. Specifically, 
garchfit associates each strict inequality constraint with its theoretical 
bound, or limit. However, to avoid the possibility of violating strict inequality 
constraints, garchfit defines the actual bound for each such constraint as the 
theoretical bound offset by 2*TolCon. Since the optimization can successfully 
terminate if the actual bound is violated by as much as TolCon, the end result 
is that any given strict inequality constraint is allowed to approach its 
theoretical bound to within TolCon. 

Single Parameter Strict Inequality Constraints
Although it is possible for an estimate of a strict inequality constraint that 
involves a single parameter to terminate a distance TolCon from its theoretical 
bound, experience has shown that this is unlikely. Examples of such 
constraints are the conditional variance constant  for the GARCH(P,Q) 
and GJR(P,Q) models, and the degrees of freedom  for the Student’s t 
distribution. Typically, when the lower or upper bound of such a 
single-parameter inequality constraint is active, the estimate remains 
2*TolCon from the bound. 

Note that even though the possibility is remote that an estimate of a single 
parameter constraint will terminate a distance TolCon from its theoretical 
bound, the garchfit approach for handling strict inequalities still allows for it.

As an illustration, assume TolCon = 1e-7 (i.e., the GARCH Toolbox default 
value), and consider the default GARCH(1,1) model:

with constraints

When the lower bound constraint  is active, the estimated value of  is 
typically .
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Relaxing Constraint Tolerance Limits
Experience has shown that relaxing TolCon is more apt to remove an active 
constraint in some cases than in others. For inequality constraints with a 
single parameter, such as  for the GARCH(P,Q) and GJR(P,Q) models and 

 for the Student’s t distribution, decreasing TolCon may relax the 
constraint such that it is no longer active. The example “Active Lower Bound 
Constraint” on page 5-28 explains how to identify such a condition by 
examining the summary output structure.

This is not generally true for linear inequality constraints with multiple 
parameters. An example is . When this constraint is active, the 
estimated values of  and  are typically such that 

. Decreasing TolCon to, say, 1e-8 allows 
 to approach 1.0 a bit more closely, but the linear inequality constraint 

is likely to remain active.
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Examples
• “Specifying Presample Data” on page 5-19

• “Presample Data and Transient Effects” on page 5-23

• “Alternative Technique for Estimating ARMA(R,M) Parameters” on 
page 5-27

• “Active Lower Bound Constraint” on page 5-28

• “Determining Convergence Status” on page 5-31

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Specifying Presample Data
This example shows you how to specify your own presample data to initiate the 
estimation process. It highlights the formal column-oriented nature of the 
presample time-series inputs.

1 Load the Nasdaq data set and convert prices to returns.

load garchdata
nasdaq = price2ret(NASDAQ);

Suppose, for example, that you want to segment the Nasdaq data in an effort 
to compare estimation results obtained from a relatively stable period to 
those from a period of relatively high volatility. If you examine the Nasdaq 
returns, there is a rather distinct increase in volatility starting, 
approximately, in December 1997. Roughly, this is the 2000th observation.

plot(nasdaq)
axis([0 length(nasdaq) -0.15 0.15])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])
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set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...
    'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
ylabel('Return')
title('Daily Returns')

2 For this example, create a specification structure to model the Nasdaq 
returns as an MA(1) process with GJR(1,1) residuals,

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
       'Display','off');

3 Estimate the parameters, standard errors, and inferred residuals and 
standard deviations using the first 2000 observations, allowing garchfit to 
automatically generate the necessary presample observations. Then display 
the estimated coefficients and errors.

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq(1:2000));
garchdisp(coeff,errors)
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  Mean: ARMAX(0,1,0); Variance: GJR(1,1)
  
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6
  
                                 Standard          T     
    Parameter       Value          Error       Statistic 
   -----------   -----------   ------------   -----------
             C    0.00056403     0.00023455       2.4048
         MA(1)    0.25006        0.024165        10.3480
             K    1.1907e-005    1.528e-006       7.7931
      GARCH(1)    0.69447        0.033664        20.6295
       ARCH(1)    0.024937       0.017695         1.4093
   Leverage(1)    0.24541        0.030517         8.0420

Since this particular conditional mean model has no regression component, 
you can obtain the same estimation results by calling garchfit with an 
empty regression matrix, X = [], as a placeholder for the third input,

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,...
       nasdaq(1:2000),[]); 

4 However, to specify your own presample data, you need to specify additional 
inputs. If you provide presample data, you must provide all necessary 
presample data, and it must be in the form of column vectors of sufficient 
length. This is because the inputs PreInnovations, PreSigmas, and 
PreSeries represent time series in a formal sense. (See “Presample 
Observations” on page 5-11.)

From the table in “Presample Observations”, the length of PreInnovations 
must be at least max(M,Q) = 1, the length of PreSigmas must be at least 
P = 1, and PreSeries can be empty or unspecified altogether because R = 0. 

Now estimate the same model from the later high-volatility period, using the 
inferred residuals and standard deviations from the previous period as the 
presample data:

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],eFit,sFit);
garchdisp(coeff, errors)

  Mean: ARMAX(0,1,0); Variance: GJR(1,1)
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  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00065398     0.00060488       1.0812
       MA(1)    0.012699       0.035131         0.3615
           K    1.7845e-005    3.9153e-006      4.5578
    GARCH(1)    0.85799        0.026246        32.6906
     ARCH(1)    0.016147       0.022595         0.7146
 Leverage(1)    0.17433        0.033234         5.2455

Comparing the estimation results from the two periods reveals a marked 
difference. Notice that the last input, PreSeries, is unnecessary and is left 
unspecified. 

Since the example uses only the most recent observations of PreInnovations, 
PreSigmas, and PreSeries, any of the following calls to garchfit produce 
identical estimation results. 

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
       eFit(end),sFit(end));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
       eFit(end),sFit(end),nasdaq(1:2000));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),...
       [],eFit,sFit,nasdaq(1999:2000));

The first equivalent call passes in the minimum required presample 
observations of past residuals and standard deviations, which in this case is 
the last inferred observation of each. The last two equivalent calls specify an 
unnecessary presample return series, which garchfit ignores.

If, for example, the original specification included an AR(2) model (i.e., = 2), 
then at least the last two Nasdaq returns are needed to initiate estimation. In 
this case, the last two calls to garchfit above would produce identical results 
for conditional mean models with AR components up to 2nd order.

R
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Presample Data and Transient Effects
This example simulates a return series, yTrue, then uses the inference function 
garchinfer to infer  and  from the simulated return series. First, the 
example uses automatically generated presample data to infer the 
approximate residuals and conditional standard deviation processes, and then 
uses explicitly specified presample data to infer the exact residuals and 
conditional standard deviation processes. The example finally compares the 
approximate conditional standard deviation processes with the exact 
conditional standard deviations processes to reveal the effect of transients in 
the approximate results. The effect of transients in the estimation, or 
inference, process parallels that in the simulations process described in 
“Automatically Generated Presample Data” on page 4-6. 

Note  This example uses garchinfer, rather than garchfit, to avoid 
introducing differences as a result of the optimization. While garchsim uses 
an ARMA model as a linear filter to transform an uncorrelated input 
innovations process  into a correlated output returns process , 
garchinfer reverses this process (as does garchfit) by inferring innovations 

 and standard deviation  processes from the observations in .

1 Specify a time series as an AR(2) conditional mean model and GARCH(1,2) 
conditional variance model. Note that this is an elaborate specification, 
typically unwarranted for a real-world financial time series, and is meant 
for illustration purposes only.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,... 
                'GARCH',0.8,'ARCH',[0.1 0.05])
spec = 

          Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
     Distribution: 'Gaussian'
                R: 2
                C: 0
               AR: [0.5000 -0.8000]
    VarianceModel: 'GARCH'
                P: 1
                Q: 2
                K: 2.0000e-004

εt{ } σt{ }

εt{ } yt{ }

εt{ } σt{ } yt{ }
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            GARCH: 0.8000
             ARCH: [0.1000 0.0500]

2 Simulate 102 observations for each of 5 realizations and reserve the first 2 
rows of observations for the presample data needed by garchinfer in step 4. 
From the table in “User-Specified Presample Data” on page 4-11, notice that 
the PreInnovations array must have at least max(M,Q) = 2 rows, 
PreSigmas must have at least P = 1 row, and PreSeries must have at least 
R = 2 rows. Add the intial state = 0 as a trailing input argument.

[eTrue,sTrue,yTrue] = garchsim(spec,102,5,0);

3 Using observations 3 and beyond as the observed return series input, call 
garchinfer without any explicit presample data to infer the approximate 
residuals and conditional standard deviations based on the default, or 
automatic, presample data inference approach (see the garchfit and 
garchinfer functions for details).

[eApprox,sApprox] = garchinfer(spec,yTrue(3:end,:));
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4 Call garchinfer again, but this time use the first two rows of the true 
simulated data as presample data. Use of the presample data allows you to 
infer the exact residuals and conditional standard deviations,

[eExact,sExact] = garchinfer(spec,yTrue(3:end,:),[],...
                  eTrue(1:2,:),sTrue(1:2,:),yTrue(1:2,:));
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5 Compare the first realization of the approximate and the exact inferred 
conditional standard deviations reveals the distinction between 
automatically generated and user-specified presample data.

plot(sApprox(:,1),'red')
grid('on'),hold('on')
plot(sExact(:,1),'blue')
title('Approximate Versus Exact Inferred Standard Deviations')

Notice that the approximate and exact standard deviations are 
asymptotically identical. The only difference between the two curves is 
attributable to the transients induced by the default initial conditions. 

In fact, if you were to plot the first realization of the original simulated 
conditional standard deviations, sTrue(3:end,1), on the current figure, it 
would lie completely on top of the blue curve.

Although the figure highlights the first realization of conditional standard 
deviations, the comparison holds for any realization, and for the inferred 
residuals as well.
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Thus, this example reveals the link between simulation and inference: 
garchsim can be thought of as a correlation filter capable of processing multiple 
realizations simultaneously, and is the complement of garchinfer, which can 
be thought of as a whitening, or inverse, filter capable of processing multiple 
realizations simultaneously. Although the estimation engine garchfit is 
capable of processing only a single realization at a time, the transient effects 
highlighted in this example are exactly the same when applied to the 
estimation. 

Alternative Technique for Estimating ARMA(R,M) 
Parameters
This example illustrates how to use the presample inputs PreInnovations and 
PreSeries to estimate the parameters of ARMA(R,M) models by a popular 
alternative technique. It assumes a simple constant variance model, and 
highlights the GARCH Toolbox as a general-purpose univariate time-series 
processor.

Default Method
As mentioned above, estimation requires presample data to initiate the inverse 
filtering process. In the absence of any explicit presample data, garchfit 
assigns the  required presample observations of , i.e., Series, the sample 
mean of Series. It also assigns the  required presample observations of , 
i.e., the innovations, or residuals, their expected value of zero. This method 
then calculates the log-likelihood objective function value using all the 
available data in Series, and is the default method used by the GARCH 
Toolbox.

Alternative Technique
Another popular method also sets the  required presample observations of 
the residuals, , to zero, but uses the first  actual observations of Series as 
initial values. Thus,  are used to initiate the inverse filter, and 
the log-likelihood objective function value is based on the remaining 
observations. See Hamilton [18], page 132, or Box, Jenkins, and Reinsel [8], 
pages 236-237.

For example, assume you have some hypothetical time series, xyz, and you 
want to estimate an ARMA(R,M) model with constant conditional variances. 
Using the alternative presample method, you would exclude the first  
observations of xyz from the input Series, and reserve them for the input 
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PreSeries. Specifically, you would set the input Series = xyz(R+1:end), 
PreInnovations = zeros(M,1), PreSigmas = [], and 
PreSeries = xyz(1:R).

Active Lower Bound Constraint
This example illustrates an active lower bound constraint, , for the 
conditional variance constant . This constraint is required for GARCH and 
GJR variance models to ensure a positive conditional variance process. It also 
illustrates how to identify such active constraints, and what to do about this 
most commonly encountered active constraint. See “Termination Criteria and 
Optimization Results” on page 5-13.

1 Load the NYSE data set and convert prices to returns.

load garchdata
nyse = price2ret(NYSE);

plot(nyse)
axis([0 length(nyse) -0.08 0.06])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])
set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...
    'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
set(gca,'YTick',[-0.08:0.02:0.06])
ylabel('Return')
title('Daily Returns')

κ 0>
κ
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2 Estimate a default GARCH(1,1) model and print the estimation results. For 
this example, notice that TolCon = 1e-6, and iterative display is disabled 
for brevity.

spec = garchset('Display','off','P',1,'Q',1,'TolCon',1e-6);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);
garchdisp(coeff,errors)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
  
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4
  
                               Standard          T     
  Parameter       Value          Error       Statistic 
  -----------   -----------   ------------   -----------
           C    0.00051941     0.00013701       3.7910
           K    2e-006         2.8192e-007      7.0943
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    GARCH(1)    0.87166        0.0095167       91.5925
     ARCH(1)    0.10419        0.0073771       14.1238

3 Examination of these results reveals the estimated variance constant 
K = 2e-006 = 0 + 2*TolCon = 2*TolCon, i.e.,  is equal to the theoretical 
lower bound plus 2*TolCon. You can see this by printing the summary 
structure and looking at the constraints message field:

summary

summary = 
          warning: 'No Warnings'
         converge: 'Function Converged to a Solution'
     constraints: 'Boundary Constraints Active: Standard 
                   Errors May Be Inaccurate'
        covMatrix: [4x4 double]
       iterations: 13
    functionCalls: 115
           lambda: [1x1 struct]

4 Print the lower and upper bound LaGrange multipliers and examine them 
for nonzero values:

[summary.lambda.lower  summary.lambda.upper]

ans =
     1.0e+006 *

              0         0
         7.3602         0
              0         0
              0         0

Notice that lower and upper bound LaGrange multipliers are ordered 
exactly as displayed by garchdisp. From this result, you can clearly see that 
the lower bound constraint  is active.

5 Repeat the estimation with the default TolCon = 1e-7 and verify that the 
constraint is no longer active.

spec = garchset('Display','off','P',1,'Q',1);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);

κ

κ 0>
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garchdisp(coeff,errors)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00049676     0.00013137       3.7813
           K    8.9128e-007    1.5776e-007      5.6495
    GARCH(1)    0.91088        0.0069142      131.7410
     ARCH(1)    0.079942       0.0058319       13.7077

summary

summary = 
          warning: 'No Warnings'
         converge: 'Function Converged to a Solution'
      constraints: 'No Boundary Constraints'
        covMatrix: [4x4 double]
       iterations: 21
    functionCalls: 208
           lambda: [1x1 struct]

[summary.lambda.lower  summary.lambda.upper]

ans =
     0     0
     0     0
     0     0
     0     0

Determining Convergence Status
There are two ways to determine whether an estimation achieves convergence. 
The first, and easiest, is to examine the optimization details of the estimation. 
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By default, garchfit displays this information in the MATLAB Command 
Window. The second way to determine convergence status is to request the 
garchfit optional summary output.

To illustrate these methods, use the DEM2GBP (Deutschmark/British pound 
foreign exchange rate) data. 

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(dem2gbp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables: 4

Functions 
 Objective:                            garchllfn
 Gradient:                             finite-differencing
 Hessian:                              finite-differencing (or Quasi-Newton)
 Nonlinear constraints:                armanlc
 Gradient of nonlinear constraints:    finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints:   0
 
 Number of linear inequality constraints:    1
 Number of linear equality constraints:      0
 Number of lower bound constraints:          4
 Number of upper bound constraints:          4

Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                             max            Directional First-order
Iter F-count   f(x)   constraint  Step-size  derivative Optimality  Procedure 
 1    28   -7916.01   -2.01e-006  7.63e-006        857   1.42e+005  
 2    36   -7959.65  -1.508e-006       0.25        389    9.8e+007  
 3    45   -7963.98  -3.113e-006      0.125        131   5.29e+006  
 4    52   -7965.59  -1.586e-006        0.5       55.9   4.45e+007  
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 5    65    -7966.9  -1.574e-006    0.00781        101   1.46e+007  
 6    74   -7969.46  -2.201e-006      0.125       14.9   2.77e+007  
 7    83   -7973.56  -2.663e-006      0.125       36.6   1.45e+007  
 8    90   -7982.09  -1.332e-006        0.5      -6.39   5.59e+006  
 9   103   -7982.13  -1.399e-006    0.00781       6.49   1.32e+006  
10   111   -7982.53  -1.049e-006       0.25       12.5   1.87e+007  
11   120   -7982.56  -1.186e-006      0.125       3.72    3.8e+006  
12   128   -7983.69   -1.11e-006       0.25      0.184   4.91e+006  
13   134   -7983.91  -7.813e-007          1      0.732   1.22e+006  
14   140   -7983.98  -9.265e-007          1      0.186   1.17e+006  
15   146      -7984  -8.723e-007          1     0.0427   9.52e+005  
16   154      -7984  -8.775e-007       0.25     0.0152   6.33e+005  
17   160      -7984   -8.75e-007          1    0.00197   6.98e+005  
18   166      -7984  -8.763e-007          1   0.000931   7.38e+005  
19   173      -7984  -8.759e-007        0.5   0.000469   7.37e+005  
20   179      -7984  -8.761e-007          1    0.00012   7.22e+005  
21   199      -7984  -8.761e-007  -6.1e-005     0.0167   7.37e+005 Hessian modified twice
22   213      -7984  -8.761e-007    0.00391    0.00582   7.26e+005 Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
  maximum constraint violation is less than options.TolCon
 No Active Constraints

Notice that the optimization details indicate successful termination. Now, 
examine the summary output structure.

summary

summary = 
          warning: 'No Warnings'
         converge: 'Function Converged to a Solution'
      constraints: 'No Boundary Constraints'
        covMatrix: [4x4 double]
       iterations: 22
    functionCalls: 213
           lambda: [1x1 struct]

The converge field indicates successful convergence. If the estimation failed to 
converge, the converge field would contain the message 'Function Did NOT 
Converge'. If the number of iterations or function evaluations exceeded its 
specified limits, the converge field would contain the message 'Maximum 
Function Evaluations or Iterations Reached'. The summary structure also 
contains fields that indicate the number of iterations (iterations) and 
log-likelihood function evaluations (functionCalls).
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Forecasting

Minimum Mean Square Error 
Forecasting (p. 6-2)

Discusses the outputs of the forecasting engine, garchpred: 
the conditional standard deviations of future innovations, 
the conditional mean forecasts of the return series, the 
MMSE volatility forecasts of returns, and the RMSE 
associated with conditional mean forecasts.

Presample Observations (p. 6-5) Explains how garchpred generates the necessary presample 
data.

Asymptotic Behavior for Long-Range 
Forecast Horizons (p. 6-6)

Discusses the asymptotic behavior of the garchpred outputs 
for long-range forecast horizons.

Examples (p. 6-8) Computes a forecast of the conditional mean, a volatility 
forecast, and a forecast with multiple realizations. 
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Minimum Mean Square Error Forecasting
The forecasting engine, garchpred, computes minimum mean square error 
(MMSE) forecasts of the conditional mean of returns  and conditional 
standard deviation of the innovations  in each period over a user-specified 
forecast horizon. To do this, it views the conditional mean and variance models 
from a linear filtering perspective, and applies iterated conditional 
expectations to the recursive equations, one forecast period at a time.

Each output of garchpred is an array with a number of rows equal to the 
user-specified forecast horizon and with a number of columns the same as the 
number of columns (i.e., realizations, or paths) in the time-series array of asset 
returns, Series. For a general forecasting example involving multiple 
realizations, see “Examples” on page 6-8.

This section discusses the four garchpred outputs:

• “Conditional Standard Deviations of Future Innovations” on page 6-2

• “Conditional Mean Forecasts of the Return Series” on page 6-3

• “MMSE Volatility Forecasts of Returns” on page 6-3

• “RMSE Associated with Conditional Mean Forecasts” on page 6-4

Conditional Standard Deviations of Future 
Innovations
The first output of garchpred, SigmaForecast, is a matrix of conditional 
standard deviations of future innovations (i.e., residuals) on a per-period basis. 
This matrix represents the standard deviations derived from the MMSE 
forecasts associated with the recursive volatility model you defined in the 
GARCH specification structure. 

For GARCH(P,Q) and GJR(P,Q) models, SigmaForecast is the square root of 
the MMSE conditional variance forecasts. For EGARCH(P,Q) models, 
SigmaForecast is the square root of the exponential of the MMSE forecasts of 
the logarithm of conditional variance. 

Since the forecasts are computed iteratively, the first row contains the 
standard deviation in the first forecast period for each realization of Series, 
the second row contains the standard deviation in the second forecast period, 
and so on. Thus, if you specify a forecast horizon greater than one, the 
per-period standard deviations of all intermediate horizons are returned as 

yt{ }
εt{ }
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well. In this case, the last row contains the standard deviation at the specified 
forecast horizon for each realization of Series.

Conditional Mean Forecasts of the Return Series
The second output of garchpred, MeanForecast, is a matrix of MMSE forecasts 
of the conditional mean of Series on a per-period basis. Again, the first row 
contains the forecast for each realization of Series in the first forecast period, 
the second row contains the forecast in the second forecast period, and the last 
row contains the forecast of Series at the forecast horizon.

MMSE Volatility Forecasts of Returns
The third output of garchpred, SigmaTotal, is a matrix of volatility forecasts 
of returns over multiperiod holding intervals. That is, the first row contains the 
expected standard deviation of returns for assets held for one period for each 
realization of Series, the second row contains the standard deviation of 
returns for assets held for two periods, and so on. Thus, the last row contains 
the forecast of the standard deviation of the cumulative return obtained if an 
asset was held for the entire forecast horizon. 

garchpred computes the elements of SigmaTotal by taking the square root of

(6-1)

where  is the forecast horizon of interest (NumPeriods), and  is the 
coefficient of the jth lag of the innovations process in an infinite-order MA 
representation of the conditional mean model (see the function garchma). 

In the special case of the default model for the conditional mean, , 
this reduces to

The SigmaTotal forecasts are correct for continuously compounded returns, 
and approximate for periodically compounded returns. SigmaTotal is the same 
size as SigmaForecast if the conditional mean is modeled as a stationary 
invertible ARMA process. 
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For conditional mean models with regression components (i.e., X or XF is 
specified), SigmaTotal is an empty matrix, []. In other words, garchpred 
computes SigmaTotal only if the conditional mean is modeled as a stationary 
invertible ARMA process. See “Regression Components in Conditional Mean 
Models” on page 7-1. 

RMSE Associated with Conditional Mean Forecasts
The fourth output of garchpred, MeanRMSE, is a matrix of root mean square 
errors (RMSE) associated with the output forecast array MeanForecast. That 
is, each element of MeanRMSE is the conditional standard deviation of the 
corresponding forecast error (i.e., the standard error of the forecast) in the 
MeanForecast matrix. From Baillie and Bollerslev [1], Equation 19,

Using this equation and the computed MMSE forecasts of the conditional mean 
(MeanForecast) and the standard errors of the corresponding forecasts 
(MeanRMSE), you can construct approximate confidence intervals for conditional 
mean forecasts, with the approximation becoming more accurate during 
periods of relatively stable volatility (see Baillie and Bollerslev [1] and 
Bollerslev, Engle, and Nelson [6]). As heteroscedasticity in returns disappears 
(i.e., as the returns approach the homoscedastic, or constant variance, limit), 
the approximation is exact and you can apply the Box & Jenkins confidence 
bounds (see Box, Jenkins, and Reinsel [8], pages 133-145).

For conditional mean models with regression components (i.e., X or XF is 
specified), MeanRMSE is an empty matrix, []. In other words, garchpred 
computes MeanRMSE only if the conditional mean is modeled as a stationary 
invertible ARMA process. See “Regression Components in Conditional Mean 
Models” on page 7-1. 
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Presample Observations
As mentioned in “Minimum Mean Square Error Forecasting” on page 6-2, 
garchpred computes MMSE forecasts by applying iterated conditional 
expectations to the conditional mean and variance models one forecast period 
at a time. Since these models are generally recursive in nature, they often 
require presample data to initiate the iterative forecasting process. This initial 
data plays the identical role that the presample time-series inputs 
PreInnovations, PreSigmas, and PreSeries play in simulation (see garchsim) 
and estimation (see garchfit and garchinfer).

Since the time-series array of asset returns, Series, is a required input, 
garchpred simply takes any initial returns it needs to initiate forecasting of the 
conditional mean directly from the last (i.e., most recent) rows of Series. For 
example, consider a conditional mean model with an AR(R) autoregressive 
component. In this case, garchpred takes the  observations required to 
initiate the forecast of each realization of Series directly from the last  rows 
of Series.

However, garchpred obtains any initial innovations and conditional standard 
deviations needed to initiate forecasting of the conditional variance model from 
the input array Series via the inverse filtering inference engine garchinfer. 

For additional details regarding estimation and inverse filtering, see 
“Maximum Likelihood Estimation” on page 5-2, “Presample Observations” on 
page 5-11, and the garchinfer function.

R
R
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Asymptotic Behavior for Long-Range Forecast Horizons
If you are working with long-range forecast horizons, the following asymptotic 
behaviors hold for the outputs of garchpred:

• As mentioned earlier in this section, the conditional standard deviation 
forecast (i.e., the first garchpred output, sigmaForecast) approaches the 
unconditional standard deviation of . For GARCH(P,Q) models it is 
given by 

For GJR(P,Q) models, it is given by

And for EGARCH(P,Q) models, it is given by

• GARCH effects do not affect the MMSE forecast of the conditional mean 
(i.e., the second garchpred output, meanForecast). The forecast approaches 
the unconditional mean of {yt} as in the constant variance case. That is, the 
presence of GARCH effects introduces dependence in the variance process, 
and only affects the uncertainty of the mean forecast, leaving the mean 
forecast itself unchanged.

• The mean square error of the conditional mean (i.e., the square of the fourth 
garchpred output, meanRMSE.^2) approaches the unconditional variance 
of {yt}.

• EGARCH(P,Q) models represent the logarithm of the conditional variance as 
the output of a linear filter, rather than the conditional variance process 
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itself. Because of this, the MMSE forecasts derived from EGARCH(P,Q) 
models are optimal for the logarithm of the conditional variance, but are 
generally downward-biased forecasts of the conditional variance process 
itself. Since the output arrays SigmaForecast, SigmaTotal, and MeanRMSE 
are based on the conditional variance forecasts, these outputs generally 
underestimate their true expected values for conditional variance forecasts 
derived from EGARCH(P,Q) models. The important exception is the 
one-period ahead forecast, which is unbiased in all cases. For unbiased 
multiperiod forecasts of SigmaForecast, SigmaTotal, and MeanRMSE, you can 
perform Monte Carlo simulation via garchsim (see “Advanced Example” on 
page 9-1).
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Examples
• “Computing a Forecast” on page 6-8

• “Volatility Forecasts over Multiple Periods” on page 6-11

• “Computing a Forecast with Multiple Realizations” on page 6-14

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Computing a Forecast
The section “Analysis and Estimation Example Using the Default Model” on 
page 2-15 uses the default GARCH(1,1) model to model the 
Deutschmark/British pound foreign exchange series. This example uses the 
resulting model 

to demonstrate the use of the forecasting function garchpred. 

1 Use the following commands to restore your workspace if necessary. The 
following text omits the display output of the estimation to save space.

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
garchdisp(coeff,errors)
 
  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
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  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -6.1919e-005   8.4331e-005     -0.7342
           K    1.0761e-006    1.323e-007       8.1341
    GARCH(1)    0.80598        0.016561        48.6685
     ARCH(1)    0.15313        0.013974        10.9586

2 Call garchpred to forecast the returns for the Deutschmark/British pound 
foreign exchange series using the default model parameter estimates. 
Provide the specification structure coeff (the output of garchfit) and the 
FX return series dem2gbp, and the number of forecast periods as input. 

Note  Example results below are displayed in Short E numeric format for 
readability. Select File -> Preferences -> Command Window -> Text 
display: short e before starting the example to duplicate this format.

Use the following command to forecast the conditional mean and standard 
deviation in each period of a 10-period forecast horizon. 

[sigmaForecast,meanForecast]  = garchpred(coeff,dem2gbp,10);
[sigmaForecast,meanForecast]

ans =

  3.8340e-003  -6.1919e-005
  3.8954e-003  -6.1919e-005
  3.9535e-003  -6.1919e-005
  4.0084e-003  -6.1919e-005
  4.0603e-003  -6.1919e-005
  4.1095e-003  -6.1919e-005
  4.1562e-003  -6.1919e-005
  4.2004e-003  -6.1919e-005
  4.2424e-003  -6.1919e-005
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  4.2823e-003  -6.1919e-005

The result consists of the MMSE forecasts of the conditional standard 
deviations and the conditional mean of the return series dem2gbp for a 
10-period default horizon. They show that the default model forecast of the 
conditional mean is always C = -6.1919e-05. This is true for any forecast 
horizon because the expected value of any innovation, , is 0.

The conditional standard deviation forecast (sigmaForecast) changes from 
period to period and approaches the unconditional standard deviation of 

, given by 

3 Calculate the unconditional standard deviation of  as 

s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:);coeff.ARCH(:)])))
s0 =
     5.1300e-003

4 Plot the unconditional standard deviation, 5.1300e-003, and the conditional 
standard deviations, sigmas, derived from the fitted returns. The plot 
reveals that the most recent values of  fall below this long-run, 
asymptotic value.

plot(sigmas), hold('on')
plot([0 size(sigmas,1)],[s0 s0],'red')
title('Fitted Conditional Standard Deviations')
hold('off')
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Volatility Forecasts over Multiple Periods
In addition to computing conditional mean and volatility forecasts on a 
per-period basis, garchpred also computes volatility forecasts of returns for 
assets held for multiple periods. For example, you could forecast the standard 
deviation of the return you would obtain if you purchased shares in a mutual 
fund that mirrors the performance of the New York Stock Exchange Composite 
Index today, and sold it 10 days from now.

1 Use the default GARCH(1,1) model (“The Default Model” on page 2-12) to 
estimate the model parameters for the NYSE data set. The following text 
omits the display output of the estimation to save space.

load garchdata
nyse = price2ret(NYSE);
[coeff,errors,LLF,innovations,sigmas] = garchfit(nyse);
garchdisp(coeff,errors)
 
  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
 
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4
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                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00049676     0.00013137       3.7813
           K    8.9128e-007    1.5776e-007      5.6495
    GARCH(1)    0.91088        0.0069142      131.7410
     ARCH(1)    0.079942       0.0058319       13.7077

2 Now, forecast and plot the standard deviation of the return you would obtain 
if you sold the shares after 10 days.

[sigmaForecast,meanForecast,sigmaTotal] = garchpred(coeff,...
                                          nyse,10);
plot(sigmaTotal)
ylabel('Standard Deviations')
xlabel('Periods')
title('10-Period Volatility Forecast')
hold('off')
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This plot represents the standard deviation of the returns (sigmaTotal) 
expected if you held the shares for the number of periods shown on the 
x-axis. The value for the tenth period is the volatility forecast of the expected 
return if you purchased the shares today and held them for 10 periods. 

Note that the calculation of sigmaTotal is strictly correct for continuously 
compounded returns only, and is an approximation for periodically 
compounded returns.

3 If you convert the standard deviations sigmaForecast and sigmaTotal to 
variances by squaring each element, you can see an interesting relationship 
between the cumulative sum of sigmaForecast.^2 and sigmaTotal.^2.

format short e
[cumsum(sigmaForecast.^2)  sigmaTotal.^2]

ans =

  5.4587e-005  5.4587e-005
  1.0956e-004  1.0956e-004
  1.6493e-004  1.6493e-004
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  2.2068e-004  2.2068e-004
  2.7680e-004  2.7680e-004
  3.3331e-004  3.3331e-004
  3.9018e-004  3.9018e-004
  4.4743e-004  4.4743e-004
  5.0504e-004  5.0504e-004
  5.6302e-004  5.6302e-004

Although not exactly equivalent, this relationship in the presence of 
heteroscedasticity is similar to the familiar square-root-of-time rule for 
converting constant variances of uncorrelated returns expressed on a 
per-period basis to a variance over multiple periods. This relationship 
between sigmaForecast and sigmaTotal holds for the default conditional 
mean model only (i.e., the relationship is valid for uncorrelated returns). 

Computing a Forecast with Multiple Realizations
This example illustrates how to forecast multiple realizations of an MA(1) 
conditional mean model with an EGARCH(1,1) conditional variance model. 

1 Load the NYSE data set and convert prices to returns.

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure template, and estimate and display the 
estimation results,

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1,...
                'Display','off');
[coeff,errors] = garchfit(spec,nyse);
garchdisp(coeff,errors)

  Mean: ARMAX(0,1,0); Variance: EGARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6
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                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00022434     0.00014038       1.5981
       MA(1)    0.10677        0.018795         5.6806
           K    -0.25399       0.031452        -8.0755
    GARCH(1)    0.97329        0.003231       301.2365
     ARCH(1)    0.14514        0.011845        12.2533
 Leverage(1)    -0.10359       0.0081483      -12.7128

3 Based on the estimation results, simulate 1000 observations for each of 
three independent realizations and forecast the conditional standard 
deviations and returns for a 10-period forecast horizon,

[innovations,sigmas,series] = garchsim(coeff,1000,3);
[sigmaForecast,meanForecast] = garchpred(coeff,series,10);

Examination of the MATLAB workspace reveals that both sigmaForecast 
and meanForecast outputs are 10-by-3 arrays. Both arrays have the same 
number of rows as the specified number of periods. The first row contains 
the standard deviations and mean forecasts for the first period, and the last 
row contains these values for the most recent period. Both arrays have the 
same number of columns as there are realizations, i.e., columns, in the 
simulated return series, series. 
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7
Regression Components in 
Conditional Mean Models

Introduction (p. 7-2) Introduces the concept of a regression component in the 
conditional mean model.

Incorporating a Regression Model in 
an Estimation (p. 7-3)

Shows you how to perform an estimation when the 
conditional mean model includes a regression component.

Simulation and Inference Using a 
Regression Component (p. 7-9)

Explains the syntax for including a matrix of explanatory 
data, i.e., a regression matrix, in calls to garchsim and 
garchinfer.

Forecasting Using a Regression 
Component (p. 7-10)

Discusses the need for both explanatory and forecast 
explanatory data when you incorporate a regression 
component in a forecast. 

Regression in a Monte Carlo 
Framework (p. 7-14)

Considers Monte Carlo simulation that includes a regression 
component.
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Introduction
The GARCH Toolbox allows conditional mean models with regression 
components, i.e., of general ARMAX(R,M,Nx) form.

with regression coefficients , and explanatory regression matrix  in which 
each column is a time series and  denotes the th row and th column.

Conditional mean models with a regression component introduce additional 
complexity in the sense that the toolbox functions have no way of knowing what 
the explanatory data represents or how it was generated. This is in contrast to 
ARMA models, which have an explicit forecasting mechanism and well-defined 
stationarity/invertibility requirements.

All the primary functions (i.e., garchfit, garchinfer, garchpred, and 
garchsim) accept an optional regression matrix, X, that represents X in the 
equation above. You must ensure that the regression matrix you provide is 
valid and you must 

• Collect and format the past history of explanatory data you include in X.

• For forecasting, forecast X into the future to form XF.
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Incorporating a Regression Model in an Estimation
This section uses the asymptotic equivalence of autoregressive models and 
linear regression models to illustrate the use of a regression component. The 
example has two parts:

• “Fitting a Model to a Simulated Return Series” on page 7-3

• “Fitting a Regression Model to the Same Return Series” on page 7-5

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

Fitting a Model to a Simulated Return Series
This section uses an AR(R)/GARCH(P,Q) model to fit a simulated return series 
to the defined model.

1 Define an AR(2)/GARCH(1,1) model. Start by creating a specification 
structure for an AR(2)/GARCH(1,1) composite model. Set the 'Display' 
parameter 'off' to suppress the optimization details that garchfit 
normally displays.

spec = garchset('AR',[0.5 -0.8],'C',0,'Regress',[0.5 -0.8],...
                'GARCH',0.7,'ARCH',0.1,'K',0.005,...
                'Display','off')

spec = 
          Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                R: 2
                C: 0
               AR: [0.5000 -0.8000]
          Regress: [0.5000 -0.8000]
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    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 0.0050
            GARCH: 0.7000
             ARCH: 0.1000
          Display: 'off'

Notice that in this specification structure, spec

- The model order fields R, M, P, and Q are consistent with the number of 
coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.

- Although the Regress field indicates two regression coefficients, the 
Comment field still contains a question mark as a placeholder for the 
number of explanatory variables. 

- There is no model order field for the Regress vector, analogous to the R, M, 
P, and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

2 Fit the model to a simulated return series. Simulate 2000 observations of 
the innovations, conditional standard deviations, and returns for the 
AR(2)/GARCH(1,1) process defined in spec. Use the model defined in spec 
to estimate the parameters of the simulated return series and then compare 
the parameter estimates to the original coefficients in spec. 

[e,s,y] = garchsim(spec,2000,1,0);
[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

  Mean: ARMAX(2,0,0); Variance: GARCH(1,1)
 
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -0.00044755    0.0034623       -0.1293
       AR(1)    0.50257        0.01392         36.1049
       AR(2)    -0.8002        0.013981       -57.2344
           K    0.0050532      0.001971         2.5637
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    GARCH(1)    0.70954        0.095319         7.4439
     ARCH(1)    0.083296       0.022665         3.6752

The estimated parameters, shown in the Value column, are quite close to the 
true coefficients in spec.

Because you specified no explanatory regression matrix as input to 
garchsim and garchfit, these functions ignore the regression coefficients 
(Regress). The garchdisp output shows a 0 for the order of the regression 
component. 

Fitting a Regression Model to the Same Return 
Series
To illustrate the use of a regression matrix, fit the return series y, an AR(2) 
process in the mean, to a regression model with two explanatory variables. The 
regression matrix consists of the first- and second-order lags of the simulated 
return series y.  The return series y was simulated in the previous topic, 
“Fitting a Model to a Simulated Return Series” on page 7-3.

1 Remove the AR component. First, remove the AR component from the 
specification structure.

spec = garchset(spec,'R',0,'AR',[])
spec = 
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: 0
          Regress: [0.5000 -0.8000]
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 0.0050
            GARCH: 0.7000
             ARCH: 0.1000
          Display: 'off'

2 Create the regression matrix. Create a regression matrix of first- and 
second-order lags using the simulated returns vector y from “Fitting a Model 
to a Simulated Return Series” on page 7-3 as input. Examine the first 10 
rows of y and the corresponding rows of the lags.
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X = lagmatrix(y,[1 2]);
[y(1:10)  X(1:10,:)]
ans =
    0.0562       NaN       NaN
    0.0183    0.0562       NaN
   -0.0024    0.0183    0.0562
   -0.1506   -0.0024    0.0183
   -0.3937   -0.1506   -0.0024
   -0.0867   -0.3937   -0.1506
    0.1075   -0.0867   -0.3937
    0.2225    0.1075   -0.0867
    0.1044    0.2225    0.1075
    0.1288    0.1044    0.2225

3 Examine the regression matrix. A NaN (an IEEE arithmetic standard for 
Not-a-Number) in the resulting matrix X indicates the presence of a missing 
observation. If you use X to fit a regression model to y, garchfit produces an 
error.

[coeff,errors] = garchfit(spec,y,X);
??? Error using ==> garchfit
 Regression matrix 'X' has insufficient number of observations.

The error occurs because there are fewer valid rows (i.e., those rows without 
a NaN) in the regression matrix X than there are observations in y. The 
returns vector y has 2000 observations but the most recent number of valid 
observations in X is only 1998. 

4 Repair the regression matrix. You can do one of two things in order to 
proceed. For a return series of this size it makes little difference which 
option you choose:

- Strip off the first two observations in y.

- Replace all NaNs in X with some reasonable value.

This example continues by replacing all NaNs with the sample mean of y. Use 
the MATLAB function isnan to identify NaNs and the function mean to 
compute the mean of y.

X(isnan(X)) = mean(y);
[y(1:10), X(1:10,:)]
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ans =
    0.0562    0.0004    0.0004
    0.0183    0.0562    0.0004
   -0.0024    0.0183    0.0562
   -0.1506   -0.0024    0.0183
   -0.3937   -0.1506   -0.0024
   -0.0867   -0.3937   -0.1506
    0.1075   -0.0867   -0.3937
    0.2225    0.1075   -0.0867
    0.1044    0.2225    0.1075
    0.1288    0.1044    0.2225

Note  If the number of valid rows in X exceeds the number of observations 
in y, then garchfit includes in the estimation only the most recent rows of X, 
equal to the number of observations in y.

5 Fit the regression model. Now that the explanatory regression matrix X is 
compatible with the return series vector y, use garchfit to estimate the 
model coefficients for the return series using the regression matrix, and 
display the results.

[coeffX,errorsX] = garchfit(spec,y,X);
garchdisp(coeffX,errorsX)

  Mean: ARMAX(0,0,2); Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -0.00044754    0.0034628       -0.1292
  Regress(1)    0.50257        0.01392         36.1048
  Regress(2)    -0.8002        0.013981       -57.2346
           K    0.0050526      0.0019708        2.5637
    GARCH(1)    0.70957        0.095311         7.4447
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     ARCH(1)    0.083292       0.022663         3.6752

These estimation results are similar to those shown for the AR model in the 
section “Fitting a Model to a Simulated Return Series” on page 7-3. This 
similarity illustrates the asymptotic equivalence of autoregressive models 
and linear regression models.

By illustrating the extra steps involved in formatting the explanatory 
matrix, this part of the example also highlights the additional complexity 
involved in modeling conditional means with regression components.
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Simulation and Inference Using a Regression Component 
Including a regression component with garchsim and garchinfer is similar to 
including one with garchfit. (See “Incorporating a Regression Model in an 
Estimation” on page 7-3.)

For example, the following command simulates a single realization of 2000 
observations of the innovations, conditional standard deviations, and returns.

[e,s,y] = garchsim(spec,2000,1,[],X);

You can also use the same regression matrix X to infer the innovations and 
conditional standard deviations from the returns.

[eInfer,sInfer] = garchinfer(spec,y,X);
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Forecasting Using a Regression Component
Inclusion of a regression component in forecasting is also similar to including 
one in an estimation. However, in addition to the explanatory data, you must 
consider the use of forecasted explanatory data. 

This section discusses

• “Forecasted Explanatory Data” on page 7-10

• “Generating Forecasted Explanatory Data” on page 7-11

• “Ordinary Least Squares Regression” on page 7-12

Forecasted Explanatory Data
If you want to forecast the conditional mean of a return series y in each period 
of a 10-period forecast horizon, the correct calling syntax for garchpred is 

NumPeriods = 10;
[sigmaForecast,meanForecast] = ...
      garchpred(spec,y,NumPeriods,X,XF);

where X is the same regression matrix shown in “Fitting a Regression Model to 
the Same Return Series” on page 7-5, and XF is a regression matrix of 
forecasted explanatory data. In fact, XF represents a projection into the future 
of the explanatory data in X. Note that the command above produces an error 
if you execute it in your current workspace because XF is missing.

XF must have the same number of columns as X. In each column of XF, the first 
row contains the one-period-ahead forecast, the second row the 
two-period-ahead forecast, and so on. If you specify XF, the number of rows 
(forecasts) in each column must equal or exceed the forecast horizon, 
NumPeriods. When the number of forecasts in XF exceeds the forecast horizon, 
garchpred uses only the first NumPeriods forecasts. If XF is empty ([]) or 
missing, the conditional mean forecast, meanForecast, has no regression 
component.

If you used a regression matrix, X, for simulation and/or estimation, then you 
should also use a regression matrix when calling garchpred. This is because 
garchpred requires a complete conditional mean specification to correctly infer 
the innovations  from the observed return series . Typically, the same 
regression matrix is used for simulation, estimation, and forecasting.

εt{ } yt{ }
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Forecasting Only the Conditional Standard Deviation
To forecast the conditional standard deviation (i.e., sigmaForecast), XF is 
unnecessary, and garchpred ignores it if it is present. This is true even if you 
included the matrix X in the simulation and/or estimation process.

For example, you could use the following syntax to forecast only the conditional 
standard deviation of the innovations  over a 10-period forecast horizon. 

sigmaForecast = garchpred(spec,y,10,X);

Forecasting the Conditional Mean
To forecast the conditional mean (i.e., meanForecast), if you specify X, you must 
also specify XF. 

For example, to forecast the conditional mean of the return series y over a 
10-period forecast horizon,

[sigmaForecast,meanForecast] = garchpred(spec,y,10,X,XF);

Generating Forecasted Explanatory Data
Typically, the regression matrix X contains the observed returns of a suitable 
market index, collected over the same time interval as the observed data of 
interest. In this case, X is most likely a vector, corresponding to a single 
explanatory variable, and you must devise some way of generating the forecast 
of X (i.e., XF).

One approach, using the GARCH Toolbox, is to first use garchfit to fit a 
suitable ARMA(R,M) model to the returns in X, then use garchpred to forecast 
the market index returns into the future. Specifically, since you’re not 
interested in fitting the volatility of X, you can simplify the estimation process 
by assuming a constant conditional variance model, e.g., 
ARMA(R,M)/GARCH(0,0).

εt{ }
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Ordinary Least Squares Regression
The following example illustrates an ordinary least squares regression by 
simulating a return series that scales the daily return values of the New York 
Stock Exchange Composite Index. It also provides an example of a constant 
conditional variance model.

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

1 Load the NYSE data set and convert the price series to a return series.

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure. Set the Display flag to 'off' to suppress 
the optimization details that garchfit normally displays.

spec = garchset('P',0,'Q',0,'C',0,'Regress',1.2,'K',0.00015,...
                'Display', 'off')

spec = 
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(0,0)'
     Distribution: 'Gaussian'
                C: 0
          Regress: 1.2000
    VarianceModel: 'GARCH'
                K: 1.5000e-004
          Display: 'off'

3 Simulate a single realization of 2000 observations, fit the model, and 
examine the results.

[e,s,y] = garchsim(spec,2000,1,0,nyse);
[coeff,errors] = garchfit(spec,y,nyse);
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garchdisp(coeff,errors)
 
  Mean: ARMAX(0,0,1); Variance: GARCH(0,0)
 
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 3

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    4.9091e-006    0.00027114       0.0181
  Regress(1)    1.2251         0.028909        42.3786
           K    0.00014662     4.6945e-006     31.2334

These estimation results are just the ordinary least squares (OLS) 
regression results. In fact, in the absence of GARCH effects and assuming 
Gaussian innovations, maximum likelihood estimation and least squares 
regression are the same thing. 

Note  This example is shown purely for illustration purposes. Although you 
can use the GARCH Toolbox to perform OLS, it is computationally inefficient 
and is not recommended.
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Regression in a Monte Carlo Framework
In the general case, the functions garchsim, garchinfer, and garchpred 
process multiple realizations (i.e., sample paths) of univariate time series. That 
is, the outputs of garchsim, as well as the observed return series input to 
garchpred and garchinfer, can be time-series matrices in which each column 
represents an independent realization. garchfit is different, in that the input 
observed return series of interest must be a vector (i.e., a single realization).

When simulating, inferring, and forecasting multiple realizations, the 
appropriate toolbox function applies a given regression matrix X to each 
realization of a univariate time series. For example, in the following command, 
garchsim applies a given X matrix to all 10 columns of the output series , 

, and .

NumSamples = 100;
NumPaths = 10;
[e,s,y] = garchsim(spec,NumSamples,NumPaths,[],X);

In a true Monte Carlo simulation of this process, including a regression 
component, you would call garchsim inside a loop 10 times, once for each path. 
Each iteration would pass in a unique realization of X and produce a 
single-column output.

εt{ }
σt{ } yt{ }
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Model Selection and 
Analysis

See “Analysis and Estimation Example Using the Default Model” on page 2-15 for information about 
using the autocorrelation and partial autocorrelation functions as qualitative guides in the process of 
model selection and assessment. This example also introduces the Ljung-Box-Pierce Q-test and 
Engle's ARCH test functions.

Likelihood Ratio Tests (p. 8-2) Uses likelihood ratio tests to determine if evidence exists to 
support the use of a specific GARCH model.

Akaike and Bayesian Information 
Criteria (p. 8-5)

Uses Akaike (AIC) and Bayesian (BIC) information criteria 
to compare alternative models.

Equality Constraints and Parameter 
Significance (p. 8-7)

Sets and constrains model parameters as a way of assessing 
the parameters’ significance.

Equality Constraints and Initial 
Parameter Estimates (p. 8-12)

Demonstrates the need for a complete model specification 
when you specify equality constraints. It also provides tips 
for using equality constraints.

Simplicity and Parsimony (p. 8-15) Explains why you should use the smallest, simplest model 
that adequately describes your data.
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Likelihood Ratio Tests
The section “Analysis and Estimation Example Using the Default Model” on 
page 2-15 demonstrates that the default GARCH(1,1) model explains most of 
the variability of the daily returns observations of the Deutschemark/British 
Pound foreign exchange rate. This example uses the function lratiotest to 
determine whether evidence exists to support the use of a GARCH(2,1) model.

The example first fits the Deutschmark/British Pound foreign exchange rate 
return series to the default GARCH(1,1) model. It then fits the same series 
using the following, more elaborate, GARCH(2,1) model.

If the Deutschmark/British Pound foreign exchange rate data is not in your 
workspace, you can restore it with these commands.

load garchdata
dem2gbp = price2ret(DEM2GBP);

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

1 Estimate the GARCH(1,1) model.  Create a GARCH(1,1) default model 
with Display set to 'off'. Then estimate the model, including the 
maximized log-likelihood function value, and display the results. 

spec11 = garchset('P',1,'Q',1,'Display','off');
[coeff11,errors11,LLF11] = garchfit(spec11,dem2gbp);
garchdisp(coeff11,errors11)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
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  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -6.1919e-005   8.4331e-005     -0.7342
           K    1.0761e-006    1.323e-007       8.1341
    GARCH(1)    0.80598        0.016561        48.6685
     ARCH(1)    0.15313        0.013974        10.9586

2 Estimate the GARCH(2,1) model.  Create a GARCH(2,1) specification 
structure, and again set Display to 'off'. Then estimate the GARCH(2,1) 
model and display the results. Again, calculate the maximized log-likelihood 
function value.

spec21 = garchset('P',2,'Q',1,'Display','off');
[coeff21,errors21,LLF21] = garchfit(spec21,dem2gbp);
garchdisp(coeff21,errors21)

  Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 5

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -5.0071e-005   8.4756e-005     -0.5908
           K    1.1196e-006    1.5358e-007      7.2904
    GARCH(1)    0.49404        0.11249          4.3918
    GARCH(2)    0.2938         0.10295          2.8537
     ARCH(1)    0.16805        0.016589        10.1305

3 Perform the likelihood ratio test.  Of the two models associated with the 
same return series, 

- The default GARCH(1,1) model is a restricted model. That is, you can 
interpret a GARCH(1,1) model as a GARCH(2,1) model with the 
restriction that . G2 0=
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- The more elaborate GARCH(2,1) model is an unrestricted model. 

Since garchfit enforces no boundary constraints during either of the two 
estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [18], 
pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the 
alternative hypothesis (i.e., the hypothesis the example gathers evidence to 
support), while the restricted GARCH(1,1) model serves as the null 
hypothesis (i.e., the hypothesis the example assumes is true, lacking any 
evidence to support the alternative). 

The LRT statistic is asymptotically chi-square distributed with degrees of 
freedom equal to the number of restrictions imposed. Since the GARCH(1,1) 
model imposes one restriction, specify one degrees of freedom in your call to 
lratiotest. Test the models at the 0.05 significance level.

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,1,0.05);
[H,pValue,Stat,CriticalValue]

ans =
         1.0000    0.0218    5.2624    3.8415

H = 1 indicates that there is sufficient statistical evidence in support of the 
GARCH(2,1) model. 

Alternatively, at the 0.02 significance level,

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,1,0.02);
[H,pValue,Stat,CriticalValue]

ans =
         0    0.0218    5.2624    5.4119

H = 0 indicates that there is insufficient statistical evidence in support of the 
GARCH(2,1) model. 
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Akaike and Bayesian Information Criteria
You can also use Akaike (AIC) and Bayesian (BIC) information criteria to 
compare alternative models. Since information criteria penalize models with 
additional parameters, the AIC and BIC model order selection criteria are 
based on parsimony (see Box, Jenkins, and Reinsel [8], pages 200-201). 

The following example uses the default GARCH(1,1) and GARCH(2,1) models 
developed in the previous section, “Likelihood Ratio Tests” on page 8-2.

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

1 Count the estimated parameters.  For both AIC and BIC, you need to 
provide the number of parameters estimated in the model. For the relatively 
simple models in the previous example, you can just count the number of 
parameters. The GARCH(2,1) model estimated five parameters, 

, and the GARCH(1,1) model estimated four 
parameters, . 

Use the function garchcount for more elaborate models. garchcount accepts 
the output specification structure created by garchfit and returns the 
number of parameters in the model defined in that structure.

n21 = garchcount(coeff21)

n21 =
     5

n11 = garchcount(coeff11)

n11 =
     4

C κ G1 G2 and A1, , , ,
C κ G1 and A1, , ,
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2 Compute the AIC and BIC criteria.  Use the function aicbic to compute 
the AIC and BIC statistics for the GARCH(2,1) model and the GARCH(1,1) 
model. Note that for the BIC statistic, you must also specify the number of 
observations in the return series. Set the numeric format to long, to see the 
results more precisely.

format long
[AIC,BIC] = aicbic(LLF21,n21,1974);
[AIC BIC]

ans =
  1.0e+004 *

       -1.59632585502853  -1.59353194641854

[AIC,BIC] = aicbic(LLF11,n11,1974);
[AIC BIC]

ans =
  1.0e+004 *

       -1.59599961321328  -1.59376448632528

You can use the relative values of the AIC and BIC statistics as guides in the 
model selection process. In this example, the AIC criterion favors the 
GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1) default 
model with fewer parameters. Notice that since BIC imposes a greater penalty 
for additional parameters than does AIC, BIC always provides a model with a 
number of parameters no greater than that chosen by AIC.

Note  You can also set the numeric format by selecting File -> Preferences -> 
Command Window -> Text display from the MATLAB desktop.
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Equality Constraints and Parameter Significance
The GARCH Toolbox lets you set and constrain model parameters as a way of 
assessing the parameters’ significance. 

This section discusses

• “The Specification Structure Fix Fields” on page 8-7

• “The GARCH(2,1) Model as an Example” on page 8-8

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

The Specification Structure Fix Fields
Each of the coefficient fields C, AR, MA, Regress, K, GARCH, ARCH, Leverage, and 
DoF in the specification structure has a corresponding logical field that lets you 
hold any individual parameter fixed. These fix fields are FixC, FixAR, FixMA, 
FixRegress, FixK, FixGARCH, FixARCH, FixLeverage, and FixDoF. 

For example, fit the Nasdaq returns series to the default GARCH(1,1) model. 
If the Nasdaq data is not already in your workspace, you can restore it with 
these commands.

load garchdata
nasdaq = price2ret(NASDAQ);

spec11 = garchset('P',1,'Q',1,'Display','off');
[coeff11,errors11,LLF11] = garchfit(spec11,nasdaq);
garchdisp(coeff11,errors11)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
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Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00085852     0.00018353       4.6778
           K    2.2595e-006    3.3806e-007      6.6836
    GARCH(1)    0.87513        0.0089892       97.3531
     ARCH(1)    0.11635        0.0085331       13.6348

Since the estimated model has no equality constraints, all the fixed fields are 
implicitly empty. For example,

garchget(coeff11,'FixGARCH')
ans =
     []

Each fix field, when not empty ([]), is the same size as the corresponding 
coefficient field. A 0 in a particular element of a fix field indicates that the 
corresponding element of its companion value field is an initial parameter 
guess that garchfit refines during the estimation process. A 1 indicates that 
garchfit holds the corresponding element of its value field fixed during the 
estimation process (i.e., an equality constraint). 

Note  To remove the constant  from the conditional mean model, i.e., to fix 
C = 0 without providing initial parameter estimates for the remaining 
parameters, set C = NaN (Not-a-Number). In this case, the value of FixC has 
no effect.

The GARCH(2,1) Model as an Example
This example compares the estimation results for the default GARCH(1,1) 
model with those obtained from fitting a GARCH(2,1) model to the Nasdaq 
returns. (See “Data Sets” on page 1-11.)

Use these commands to restore your workspace if necessary.

load garchdata
nasdaq = price2ret(NASDAQ);

C
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1 Estimate the model parameters and display the results. 

spec21 = garchset('P',2,'Q',1,'Display','off');
[coeff21,errors21,LLF21] = garchfit(spec21,nasdaq);
garchdisp(coeff21,errors21)

Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 5

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00086237     0.00018378       4.6925
           K    2.3016e-006    4.7519e-007      4.8436
    GARCH(1)    0.83571        0.18533          4.5092
    GARCH(2)    0.036149       0.16562          0.2183
     ARCH(1)    0.1195         0.020346         5.8734

The T Statistic column is the parameter value divided by the standard 
error, and is normally distributed for large samples. The T-statistic 
measures the number of standard deviations the parameter estimate is 
away from zero, and, as a general rule, a T-statistic greater than 2 in 
magnitude corresponds to approximately a 95 percent confidence interval. 
The T-statistics in the table above imply that the GARCH(2) parameter adds 
little if any explanatory power to the model.

2 Assess significance of the GARCH(2) parameter.  Begin by constraining 
the GARCH(2) parameter at 0.

specG2 = garchset(coeff21,'GARCH',[0.8 0],'FixGARCH',[0 1]);

Using the specG2 structure, garchfit holds GARCH(2) fixed at 0, and refines 
GARCH(1) from an initial value of 0.8 during the estimation process. In other 
words, the specG2 specification structure tests the composite model

yt C εt+=
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which is mathematically equivalent to the default GARCH(1,1) model.

Now estimate the model subject to the equality constraint and display the 
results.

[coeffG2,errorsG2,LLFG2] = garchfit(specG2,nasdaq);
garchdisp(coeffG2,errorsG2)
 
  Mean: ARMAX(0,0,0); Variance: GARCH(2,1)
 
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00085827     0.00018353       4.6766
           K    2.2574e-006    3.3785e-007      6.6818
    GARCH(1)    0.87518        0.0089856       97.3979
    GARCH(2)    0              Fixed             Fixed
     ARCH(1)    0.11631        0.0085298       13.6357

Notice that the standard error and T-statistic columns for the second 
GARCH parameter indicate that garchfit held the GARCH(2) parameter 
fixed. The number of estimated parameters also decreased from 5 in the 
original, unrestricted GARCH(2,1) model to 4 in this restricted GARCH(2,1) 
model. Also notice that the results are virtually identical to those obtained 
from the GARCH(1,1) model in step 1.

Apply the likelihood ratio test as before.

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLFG2,1, 0.05);
[H pValue Stat CriticalValue]

ans =

σt
2 κ G1σt 1–

2
0σt 2–

2
A1εt 1–

2
+ + +=
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    0    0.7835   0.0755    3.8415

As expected, since the two models are virtually identical, the results support 
acceptance of the simpler restricted model, which is essentially just the 
default GARCH(1,1) model.
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Equality Constraints and Initial Parameter Estimates
This section highlights some important points regarding equality constraints 
and initial parameter estimates in the GARCH Toolbox. It discusses

• “Complete Model Specification” on page 8-12

• “Empty Fix Fields” on page 8-13

• “Limiting Use of Equality Constraints” on page 8-14

Note  See “The Specification Structure Fix Fields” on page 8-7 for 
information about using the specification structure fix fields to set equality 
constraints.

Complete Model Specification
To set equality constraints during estimation, you must provide a complete 
model specification; i.e., the specification must include initial parameter 
estimates consistent with the model orders. The only flexibility in this regard 
is that you can specify the model for either the conditional mean or the 
conditional variance, without specifying the other. 

The following example demonstrates an attempt to set equality constraints for 
an incomplete conditional mean model and a complete variance model. Create 
an ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and 
variance models, respectively.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,'FixAR',1,...
                'P',1,'Q',1,'K',0.0005,'GARCH',0.8,...
                'ARCH',0.1,'FixGARCH',1)
spec = 

          Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                R: 1
                M: 1
                C: 0
               AR: 0.5000
               MA: []
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    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: 5.0000e-004
            GARCH: 0.8000
             ARCH: 0.1000
            FixAR: 1
         FixGARCH: 1

The conditional mean model is incomplete because the MA field is still empty. 
Since the requested ARMA(1,1) model is an incomplete conditional mean 
specification, garchfit ignores the C, AR, and FixAR fields, computes initial 
parameter estimates, and overwrites any existing parameters in the 
incomplete conditional mean specification. It also estimates all conditional 
mean parameters (i.e., C, AR, and MA) and ignores the request to constrain the 
AR parameter.

However, since the structure explicitly sets all fields in the conditional 
variance model, garchfit uses the specified values of K and ARCH as initial 
estimates subject to further refinement, and holds the GARCH parameter at 0.8 
throughout the optimization process.

Empty Fix Fields
Any fix field that you leave empty, ([]), is equivalent to a vector of zeros of 
compatible length. That is, when garchfit encounters an empty fix field, it 
automatically estimates the corresponding parameter. For example, the 
following specification structures produce the same GARCH(1,1) estimation 
results.

spec1 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1,...
                 'FixGARCH',0,'FixARCH',0)

spec2 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1)

Note  To remove the constant  from the conditional mean model, i.e., to fix 
C = 0 without providing initial parameter estimates for the remaining 
parameters, use garchset to set C = NaN (Not-a-Number). In this case, the 
value of FixC is ignored.

C



8 Model Selection and Analysis

8-14

Limiting Use of Equality Constraints
Although the ability to set equality constraints is both convenient and useful, 
equality constraints complicate the estimation process. For this reason, you 
should avoid setting several equality constraints simultaneously. For example, 
if you really want to estimate a GARCH(1,1) model, then specify a GARCH(1,1) 
model instead of a more elaborate model with numerous constraints.
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Simplicity and Parsimony
As a general rule, you should specify the smallest, simplest models that 
adequately describe your data. This is especially relevant for estimation. 
Simple models are easier to estimate, easier to forecast, and easier to analyze. 
In fact, certain model selection criteria, such as AIC and BIC discussed in the 
section “Model Selection and Analysis” on page 8-1, penalize models for their 
complexity. 

It makes sense to use diagnostic tools such as autocorrelation function (ACF) 
and partial autocorrelation function (PACF) to guide model selection. For 
example, the section “Analysis and Estimation Example Using the Default 
Model” on page 2-15 examines the ACF and PACF of the Deutschmark/British 
Pound foreign exchange rate (see “Data Sets” on page 1-11). The results 
support the use of a simple constant for the conditional mean model as 
adequate to describe the data. 

The following example illustrates an unnecessarily complicated model 
specification. It simulates a returns series as a pure GARCH(1,1) innovations 
process (i.e., the default model), then attempts to overfit an 
ARMA(1,1)/GARCH(1,1) composite model to the data.

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

1 Create a specification structure for the innovations process and simulate the 
returns.

spec = garchset('C',0,'K',0.00005,'GARCH',0.85,'ARCH',0.1,...
                'Display','off');
[e,s,y] = garchsim(spec,5000,1,0);

2 Fit the default model to the known GARCH(1,1) innovations process and 
display the estimation results.
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[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -5.8129e-005   0.0004096       -0.1419
           K    4.6408e-005    8.3396e-006      5.5648
    GARCH(1)    0.85994        0.014612        58.8515
     ARCH(1)    0.095354       0.0097535        9.7765

These estimation results indicate that the model that best fits the observed 
data is approximately

3 Continue by fitting the known GARCH(1,1) innovations process to an 
ARMA(1,1) mean model and display the estimation results.

spec11 = garchset(spec,'R',1,'M',1);
[coeff11,errors11] = garchfit(spec11,y);
garchdisp(coeff11,errors11)

  Mean: ARMAX(1,1,0); Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 6

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -7.1366e-005   0.00052468      -0.1360
       AR(1)    -0.24509       0.32706         -0.7494

yt 5.8129e-005– εt+=

σt
2

4.6408e 005– 0.85994σt 1–
2

0.95354εt 1–
2

+ +=
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       MA(1)    0.28515        0.32362          0.8811
           K    4.6868e-005    8.4098e-006      5.5731
    GARCH(1)    0.85917        0.014733        58.3160
     ARCH(1)    0.095584       0.0097975        9.7560

4 Examine the results. Close examination of the conditional mean equation 
reveals that the AR(1) and MA(1) parameters are quite similar. In fact, when 
rewriting the mean equation in backshift (i.e., lag) operator notation, where 

,

the autoregressive and moving-average polynomials come close to canceling 
each other (see Box, Jenkins, and Reinsel [8], pages 263-267). This is an 
example of parameter redundancy, or pole-zero cancellation, and supports 
the use of the simple default model. In fact, the more elaborate ARMA(1,1) 
model only complicates the analysis by requiring the estimation of two 
additional parameters.

Byt yt 1–=

1 0.24509B+( )yt 7.1366e-005– 1 0.28515B+( )εt+=
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Advanced Example

Estimating the Model (p. 9-2) Fits ARMA(1,1) and GJR(1,1) models to the conditional 
mean and variance processes, respectively, of the Nasdaq 
return series, assuming conditionally t-distributed 
residuals.

Forecasting (p. 9-4) Uses the estimated model from the first part of the 
example to forecast the conditional standard deviations of 
residuals, the returns, the standard deviations of 
multi-period cumulative returns, and the standard errors 
of the forecast of returns over multiple periods.

Monte Carlo Simulation (p. 9-6) Uses the estimated model from the first part of the 
example and vector-format presample data to perform 
dependent-path Monte Carlo simulation of multiple 
realizations.

Comparing Forecasts with Simulation 
Results (p. 9-8)

Illustrates the relationship between forecasting and 
dependent-path Monte Carlo simulation by comparing and 
contrasting the forecasts with their counterparts derived 
from the Monte Carlo simulation.
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Estimating the Model
The first part of the example fits the Nasdaq daily returns to an 
ARMA(1,1)/GJR(1,1) model with conditionally t-distributed residuals. (See 
“Data Sets” on page 1-11 for more information about the Nasdaq Composite 
Index data set.)

1 Load the Nasdaq data set and convert daily closing prices to daily returns.

load garchdata
nasdaq = price2ret(NASDAQ);

2 Create a specification structure for an ARMA(1,1)/GJR(1,1) model with 
conditionally t-distributed residuals.

spec = garchset('VarianceModel','GJR','R',1,'M',1,'P',1,'Q',1);
spec = garchset(spec,'Display','off','Distribution','T');

Note  This example is for illustration purposes only. Such an elaborate 
ARMA(1,1) model is typically unwarranted, and should only be used after you 
have performed a sound preestimation analysis.

Note  The estimation results you obtain when you recreate examples in this 
book may differ slightly from those shown in the text because of differences in 
platforms (operating systems), as well as in versions of MATLAB, the 
Optimization Toolbox, and supporting math libraries. These differences in the 
optimization results will propagate through any subsequent examples that 
use the estimation results as input. These differences, however, do not affect 
the outcome of the examples.

3 Estimate the parameters of the mean and conditional variance models via 
garchfit. Make sure that the example returns the estimated residuals and 
conditional standard deviations inferred from the optimization process so 
that they can used as presample data.
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[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq);

Alternatively, you could replace the above call to garchfit with the 
following successive calls to garchfit and garchinfer. This is because the 
estimated residuals and conditional standard deviations are also available 
from the inference function garchinfer, 

[coeff,errors] = garchfit(spec,nasdaq);
[eFit,sFit] = garchinfer(coeff,nasdaq);

Either approach produces the same estimation results.

garchdisp(coeff,errors)

   Mean: ARMAX(1,1,0); Variance: GJR(1,1)

  Conditional Probability Distribution: T
  Number of Model Parameters Estimated: 8

                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    0.00099709     0.00023381       4.2646
       AR(1)    -0.10719       0.11571         -0.9264
       MA(1)    0.26272        0.11208          2.3441
           K    1.4684e-006    3.8716e-007      3.7927
    GARCH(1)    0.89993        0.011223        80.1855
     ARCH(1)    0.048844       0.013619         3.5863
 Leverage(1)    0.086624       0.016922         5.1189
         DoF    7.8274         0.9301           8.4157
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Forecasting
The second part of the example uses the estimated model (“Estimating the 
Model” on page 9-2) to compute forecasts for the Nasdaq return series 30 days 
into the future. 

Set the forecast horizon to 30 days (i.e., one month), then call the forecasting 
engine, garchpred, with the estimated model parameters, coeff, the Nasdaq 
returns, and the forecast horizon.

horizon = 30;  % Define the forecast horizon
[sigmaForecast,meanForecast,sigmaTotal,meanRMSE] = ...
      garchpred(coeff,nasdaq,horizon);

This call to garchpred returns

• Forecasts of conditional standard deviations of the residuals 
(sigmaForecast)

• Forecasts of the Nasdaq returns (meanForecast)

• Forecasts of the standard deviations of the cumulative holding period 
Nasdaq returns (sigmaTotal)

• Standard errors associated with forecasts of Nasdaq returns (meanRMSE)

Because the return series nasdaq is a vector, all garchpred outputs are vectors. 
Because garchpred uses iterated conditional expectations to successively 
update forecasts, all garchpred outputs have 30 rows. The first row stores the 
1-period-ahead forecasts, the second row stores the 2-period-ahead forecasts, 
and so on. Thus, the last row stores the forecasts at the 30-day horizon.
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Monte Carlo Simulation
The third part of the example uses the same estimated model (coeff) it used in 
the second part of the example, “Forecasting” on page 9-4, to simulate 20000 
realizations for the same 30-day period. 

The example explicitly specifies the needed presample data. It uses the 
inferred residuals (eFit) and standard deviations (sFit) from the first part of 
the example, “Estimating the Model” on page 9-2, as the presample inputs 
PreInnovations and PreSigmas, respectively. It uses the nasdaq return series 
as the presample input PreSeries. Because all three inputs are vectors, 
garchsim applies the same vector to each column of the corresponding outputs, 
Innovations, Sigmas, and Series. In this context, referred to as 
dependent-path simulation, all simulated sample paths share a common 
conditioning set and evolve from the same set of initial conditions, thus 
enabling Monte Carlo simulation of forecasts and forecast error distributions.

Note that you can specify PreInnovations, PreSigmas, and PreSeries as 
matrices, where each column is a realization, or as single-column vectors. In 
either case, they must have a sufficient number of rows to initiate the 
simulation (see “User-Specified Presample Data” on page 4-11).

For this application of Monte Carlo simulation, the example generates a 
relatively large number of realizations, or sample paths, so that it can 
aggregate across realizations. Because each realization corresponds to a 
column in the garchsim time-series output arrays, the output arrays are large, 
with many columns. 

The following code simulates 20000 paths (i.e., columns). As a result, each 
time-series output that garchsim returns is an array of size 
horizon-by-nPaths, or 30-by-20000. Although more realizations (e.g., 100000) 
provide more accurate simulation results, you may want to decrease the 
number of paths (e.g., to 10000) to avoid memory limitations.

nPaths = 20000;  % Define the number of realizations.
[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths,0,[],[],...
                            eFit,sFit,nasdaq);
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Because garchsim needs only the last, or most recent, observation of each, the 
following command produces identical results.

[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths,0,[],[],...
                            eFit(end),sFit(end),nasdaq(end));
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Comparing Forecasts with Simulation Results
The fourth, and last, part of this example graphically compares the forecasts 
from “Forecasting” on page 9-4 with their counterparts derived from the Monte 
Carlo experiment described in “Monte Carlo Simulation” on page 9-6. The first 
four figures directly compare each of the garchpred outputs, in turn, with the 
corresponding statistical result obtained from simulation. The last two figures 
illustrate histograms from which approximate probability density functions 
and empirical confidence bounds can be computed. 

Note  For an EGARCH model, multi-period MMSE forecasts are generally 
downward biased and underestimate their true expected values for 
conditional variance forecasts. This is not true for one-period-ahead forecasts, 
which are unbiased in all cases. For unbiased multi-period forecasts of 
sigmaForecast, sigmaTotal, and meanRMSE, you can perform Monte Carlo 
simulation via garchsim. For more information, see “Asymptotic Behavior for 
Long-Range Forecast Horizons” on page 6-6.

1 Compare the first garchpred output, sigmaForecast, i.e., the conditional 
standard deviations of future innovations, with its counterpart derived from 
the Monte Carlo simulation.

figure
plot(sigmaForecast,'.-b')
hold('on')
grid('on')
plot(sqrt(mean(sSim.^2,2)),'.r')
title('Forecast of STD of Residuals')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')
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2 Compare the second garchpred output, meanForecast, i.e., the MMSE 
forecasts of the conditional mean of the nasdaq return series, with its 
counterpart derived from the Monte Carlo simulation.

figure(2)
plot(meanForecast,'.-b')
hold('on')
grid('on')
plot(mean(ySim,2),'.r')
title('Forecast of Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Return')
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3 Compare the third garchpred output, sigmaTotal, i.e., cumulative holding 
period returns, with its counterpart derived from the Monte Carlo 
simulation.

holdingPeriodReturns = log(ret2price(ySim,1)); 
figure(3)
plot(sigmaTotal,'.-b')
hold('on') 
grid('on')
plot(std(holdingPeriodReturns(2:end,:)'),'.r')
title('Forecast of STD of Cumulative Holding Period Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Standard Deviation')

Figure 2 goes here.
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4 Compare the fourth garchpred output, meanRMSE, i.e. the root mean square 
errors (RMSE) of the forecasted returns, with its counterpart derived from 
the Monte Carlo simulation.

figure(4)
plot(meanRMSE,'.-b')
hold('on')
grid('on')
plot(std(ySim'),'.r')
title('Standard Error of Forecast of Returns')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')
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5 Use a histogram to illustrate the distribution of the cumulative holding 
period return obtained if an asset was held for the full 30-day forecast 
horizon, i.e., the return obtained if you purchased a mutual fund that 
mirrors the performance of the Nasdaq Composite Index today, and sold 
after 30 days. Notice that this histogram is directly related to the final red 
dot in step 3.

figure(5)
hist(holdingPeriodReturns(end,:),30)
grid('on')
title('Cumulative Holding Period Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')
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6 Use a histogram to illustrate the distribution of the single-period return at 
the forecast horizon, i.e., the return of the same mutual fund the 30th day 
from now. Notice that this histogram is directly related to the final red dots 
in steps 2 and 4.

figure(6)
hist(ySim(end,:),30)
grid('on')
title('Simulated Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')
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Note  This example is not meant to imply that such elaborate conditional 
mean and variance models are required to describe typical financial time 
series, nor is it meant to imply that most users will need to perform such 
detailed analyses at all. Furthermore, it is not meant to imply that such a 
graphical analysis even makes sense for a given model, or that this is the only 
graphs that could make sense.

This example merely highlights the range of possibilities, and provides a 
deeper understanding of the interaction between the simulation, forecasting, 
and estimation engines, garchsim, garchpred, and garchfit, respectively. 
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Function Reference

Functions — Categorical List (p. 10-2) Lists the GARCH Toolbox functions and classes according 
to their purpose.

Functions — Alphabetical List (p. 10-4) Lists the GARCH Toolbox functions and classes 
alphabetically.
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Functions — Categorical List
This section lists the GARCH Toolbox functions according to their purpose.

• “GARCH Modeling” on page 10-2

• “GARCH Innovations Inference” on page 10-2

• “Statistics and Tests” on page 10-2

• “GARCH Specification Structure Interface Functions” on page 10-3

• “Helpers and Utilities” on page 10-3

• “Graphics” on page 10-3

GARCH Modeling

GARCH Innovations Inference

Statistics and Tests

garchfit Univariate GARCH process parameter estimation.

garchpred Univariate GARCH process forecasting.

garchsim Univariate GARCH process simulation.

garchinfer Inverse filter to infer GARCH innovations and conditional 
standard deviations from an observed return series.

aicbic Akaike and Bayesian information criteria for model order 
selection.

archtest Engle’s hypothesis test for the presence of ARCH/GARCH 
effects.

autocorr Plot or return computed sample autocorrelation function.

crosscorr Plot or return computed sample crosscorrelation function.

lbqtest Ljung-Box Q-statistic lack-of-fit hypothesis test.
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GARCH Specification Structure Interface Functions

Helpers and Utilities

Graphics

lratiotest Likelihood ratio hypothesis test.

parcorr Plot or return computed sample partial autocorrelation 
function.

garchget Retrieve a GARCH specification structure parameter.

garchset Create or modify a GARCH specification structure.

garchar Convert finite-order ARMA models to infinite-order AR 
models.

garchcount Count GARCH estimation coefficients.

garchdisp Display GARCH process estimation results.

garchma Convert finite-order ARMA models to infinite-order MA 
models.

lagmatrix Create a lagged time-series matrix.

price2ret Convert price series to a return series.

ret2price Convert return series to a price series.

garchplot Plot matched univariate innovations, volatility, and return 
series.
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Functions — Alphabetical List 10

This section contains function reference pages listed alphabetically. 
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10aicbicPurpose Akaike (AIC) and Bayesian (BIC) information criteria for model order selection

Syntax AIC = aicbic(LLF,NumParams)
[AIC,BIC] = aicbic(LLF,NumParams,NumObs)

Description aicbic computes the Akaike and Bayesian information criteria, using 
optimized log-likelihood objective function (LLF) values as input. You can 
obtain the LLF values by fitting models of the conditional mean and variance 
to a univariate return series.

AIC = aicbic(LLF,NumParams) computes only the Akaike (AIC) information 
criteria. 

[AIC,BIC] = aicbic(LLF,NumParams,NumObs) computes both the Akaike 
(AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters, 
parsimony is the basis of the AIC and BIC model order selection criteria. 

Input 
Arguments

 LLF Vector of optimized log-likelihood objective function (LLF) 
values associated with parameter estimates of the models 
to be tested. aicbic assumes you obtained the LLF values 
from the estimation function garchfit or the inference 
function garchinfer. 

NumParams Number of estimated parameters associated with each 
LLF value in LLF. NumParams can be a scalar applied to all 
values in LLF, or a vector the same length as LLF. All 
elements of NumParams must be positive integers. Use 
garchcount to compute NumParams values. 

NumObs Sample size of the observed return series you associate 
with each value of LLF. NumObs can be a scalar applied to 
all values in LLF, or a vector the same length as LLF. It is 
required to compute BIC. All elements of NumObs must be 
positive integers. 
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Output 
Arguments

 

Examples See “Akaike and Bayesian Information Criteria” on page 8-5.

See Also garchdisp, garchfit, garchinfer

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

AIC Vector of AIC statistics associated with each LLF objective 
function value. The AIC statistic is defined as

BIC Vector of BIC statistics associated with each LLF objective 
function value. The BIC statistic is defined as

 

AIC 2– LLF×( ) 2 NumParams×( )+=

BIC 2– LLF×( )
NumParams log NumObs( )×( )+

=
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10archtestPurpose Engle’s hypothesis test for the presence of ARCH/GARCH effects

Syntax [H,pValue,ARCHstat,CriticalValue] = archtest(Residuals,Lags,Alpha)

Description [H,pValue,ARCHstat,CriticalValue] = archtest(Residuals,Lags,Alpha)
tests the null hypothesis that a time series of sample residuals consists of 
independent identically distributed (i.i.d.) Gaussian disturbances, i.e., that no 
ARCH effects exist. 

Given sample residuals obtained from a curve fit (e.g., a regression model), 
archtest tests for the presence of th order ARCH effects by regressing the 
squared residuals on a constant and the lagged values of the previous  
squared residuals. Under the null hypothesis, the asymptotic test statistic, 

, where  is the number of squared residuals included in the regression 
and  is the sample multiple correlation coefficient, is asymptotically 
chi-square distributed with  degrees of freedom. When testing for ARCH 
effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.

Input 
Arguments

 

M
M

T R2
( ) T

R2

M

Residuals Time-series column vector of sample residuals obtained from a 
curve fit, which archtest examines for the presence of ARCH 
effects. The last row contains the most recent observation.

Lags Vector of positive integers indicating the lags of the squared 
sample residuals included in the ARCH test statistic. If 
specified, each lag should be significantly less than the length 
of Residuals. If Lags = [] or is not specified, the default is 1 
lag (i.e., first-order ARCH).

Alpha Significance levels of the hypothesis test. Alpha can be a 
scalar applied to all lags in Lags, or a vector of significance 
levels the same length as Lags. If Alpha = [] or is not 
specified, the default is 0.05. For all elements, , of Alpha, 

.
α

0 α 1< <
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Output 
Arguments

 

Examples Example 1.  Create a time-series column vector of 100 (synthetic) residuals, 
then test for the first, second, and fourth order ARCH effects at the 10 percent 
significance level.

randn('state',0)                % Start from a known state.
residuals     = randn(100,1);   % 100 Gaussian deviates ~ N(0,1)
[H,P,Stat,CV] = archtest(residuals,[1 2 4]',0.10);
[H,P,Stat,CV]

ans =

         0    0.3925    0.7312    2.7055
         0    0.5061    1.3621    4.6052
         0    0.7895    1.7065    7.7794

Example 2.  See “Analysis and Estimation Example Using the Default Model” 
on page 2-15 for another example.

See Also lbqtest

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
1982, pp. 987-1007.

H Boolean decision vector. 0 indicates acceptance of the null 
hypothesis that no ARCH effects exist; i.e., there is 
homoscedasticity at the corresponding element of Lags. 1 
indicates rejection of the null hypothesis. The length of H is 
the same as the length of Lags.

pValue Vector of P-values (significance levels) at which archtest 
rejects the null hypothesis of no ARCH effects at each lag in 
Lags.

ARCHstat Vector of ARCH test statistics for each lag in Lags.

CriticalValue Vector of critical values of the chi-square distribution for 
comparison with the corresponding element of ARCHstat.
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[3] Gourieroux, C., ARCH Models and Financial Applications, 
Springer-Verlag, 1997.

[4] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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10autocorrPurpose Plot or return computed sample autocorrelation function

Syntax autocorr(Series,nLags,M,nSTDs)
[ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs)

Description autocorr(Series,nLags,M,nSTDs) computes and plots the sample ACF of a 
univariate, stochastic time series with confidence bounds. To plot the ACF 
sequence without the confidence bounds, set nSTDs = 0.

[ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs) computes and 
returns the ACF sequence.

Input 
Arguments

Series Column vector of observations of a univariate time series for 
which autocorr computes or plots the sample autocorrelation 
function (ACF). The last row of Series contains the most recent 
observation of the time series.

nLags Positive scalar integer indicating the number of lags of the ACF to 
compute. If nLags = [] or is not specified, the default is to 
compute the ACF at lags 0, 1, 2, ..., , where 

= min([20,length(Series)-1]).

M Nonnegative integer scalar indicating the number of lags beyond 
which the theoretical ACF is effectively 0. autocorr assumes the 
underlying Series is an MA(M) process, and uses Bartlett’s 
approximation to compute the large-lag standard error for lags 
greater than M. If M = [] or is not specified, the default is 0, and 
autocorr assumes that Series is Gaussian white noise. If Series 
is a Gaussian white noise process of length , the standard error 
is approximately . M must be less than nLags.

nSTDs Positive scalar indicating the number of standard deviations of 
the sample ACF estimation error to compute. autocorr assumes 
the theoretical ACF of Series is 0 beyond lag M. When M = 0 and 
Series is a Gaussian white noise process of length , specifying 
nSTDs results in confidence bounds at . If 
nSTDs = [] or is not specified, the default is 2 (i.e., approximate 
95 percent confidence interval).

T
T

N
1 N⁄

N
nSTDs N⁄( )±
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Output 
Arguments

 

Examples Example 1.  Create an MA(2) time series from a column vector of 1000 
Gaussian deviates, and assess whether the ACF is effectively zero for lags 
greater than 2.

randn('state',0)             % Start from a known state.
x = randn(1000,1);           % 1000 Gaussian deviates ~ N(0,1).
y = filter([1 -1 1],1,x);    % Create an MA(2) process.
[ACF,Lags,Bounds] = autocorr(y,[],2);  % Compute the ACF with
                                       % 95 percent confidence.
[Lags, ACF]

ans =
         0    1.0000
    1.0000   -0.6487
    2.0000    0.3001
    3.0000    0.0229
    4.0000    0.0196
    5.0000   -0.0489
    6.0000    0.0452
    7.0000    0.0012
    8.0000   -0.0214
    9.0000    0.0235
   10.0000    0.0340
   11.0000   -0.0392
   12.0000    0.0188
   13.0000    0.0504
   14.0000   -0.0600

ACF Sample autocorrelation function of Series. ACF is a vector of 
length nLags+1 corresponding to lags 0, 1, 2, ..., nLags. The first 
element of ACF is unity, that is, ACF(1) = 1 = lag 0 correlation.

Lags Vector of lags corresponding to ACF(0,1,2,...,nLags). Since an 
ACF is symmetric about 0 lag, autocorr ignores negative lags.

Bounds Two-element vector indicating the approximate upper and lower 
confidence bounds, assuming that Series is an MA(M) process. 
Values of ACF beyond lag M that are effectively 0 lie within these 
bounds. Note that autocorr computes Bounds only for lags 
greater than M. 
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   15.0000    0.0251
   16.0000    0.0441
   17.0000   -0.0732
   18.0000    0.0755
   19.0000   -0.0571
   20.0000    0.0485

Bounds

Bounds =
    0.0899
   -0.0899

autocorr(y,[],2)      % Use the same example, but plot the ACF
                      % sequence with confidence bounds.

 

Example 2.  See “Analysis and Estimation Example Using the Default Model” 
on page 2-15 for another example.
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See Also crosscorr, parcorr
filter (MATLAB)

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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10crosscorrPurpose Plot or return computed sample crosscorrelation function

Syntax crosscorr(Series1,Series2,nLags,nSTDs)
[XCF,Lags,Bounds] = crosscorr(Series1,Series2,nLags,nSTDs)

Description crosscorr(Series1,Series2,nLags,nSTDs) computes and plots the sample 
crosscorrelation function (XCF) between two univariate, stochastic time series. 
To plot the XCF sequence without the confidence bounds, set nSTDs = 0.

[XCF,Lags,Bounds] = crosscorr(Series1,Series2,nLags,nSTDs)
computes and returns the XCF sequence.

Input 
Arguments

 

Output 
Arguments

 

Series1 Column vector of observations of the first univariate time series 
for which crosscorr computes or plots the sample 
crosscorrelation function (XCF). The last row of Series1 contains 
the most recent observation.

Series2 Column vector of observations of the second univariate time series 
for which crosscorr computes or plots the sample XCF. The last 
row of Series2 contains the most recent observation.

nLags Positive scalar integer indicating the number of lags of the XCF to 
compute. If nLags = [] or is not specified, crosscorr computes 
the XCF at lags , where 

= min([20,min([length(Series1),length(Series2)])-1]).

nSTDs Positive scalar indicating the number of standard deviations of 
the sample XCF estimation error to compute, if Series1 and 
Series2 are uncorrelated. If nSTDs = [] or is not specified, the 
default is 2 (i.e., approximate 95 percent confidence interval). 

0 1± 2± … T±, , , ,
T

XCF Sample crosscorrelation function between Series1 and Series2. 
XCF is a vector of length 2(nLags)+1, which corresponds to lags 

. The center element of XCF contains the 0th 
lag cross correlation. 
0 1± 2± … nLAGs±, , , ,
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Examples Example 1.  Create a time-series column vector of 100 Gaussian deviates, and 
a delayed version lagged by four samples. Compute the XCF, and then plot it 
to see the XCF peak at the fourth lag.

randn('state',100)              % Start from a known state.
x = randn(100,1);               % 100 Gaussian deviates, N(0,1).
y = lagmatrix(x,4);             % Delay it by 4 samples.
y(isnan(y)) = 0;                % Replace NaNs with zeros.
[XCF,Lags,Bounds] = crosscorr(x,y);   % Compute the XCF with
                                      % 95 percent confidence.
[Lags, XCF]

ans =

  -20.0000   -0.0210
  -19.0000   -0.0041
  -18.0000    0.0661
  -17.0000    0.0668
  -16.0000    0.0380
  -15.0000   -0.1060
  -14.0000    0.0235
  -13.0000    0.0240
  -12.0000    0.0366
  -11.0000    0.0505
  -10.0000    0.0661
   -9.0000    0.1072
   -8.0000   -0.0893
   -7.0000   -0.0018
   -6.0000    0.0730
   -5.0000    0.0204
   -4.0000    0.0352
   -3.0000    0.0792
   -2.0000    0.0550
   -1.0000    0.0004

Lags Vector of lags corresponding to XCF(-nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper and lower 
confidence bounds, assuming that Series1 and Series2 are 
completely uncorrelated.
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         0   -0.1556
    1.0000   -0.0959
    2.0000   -0.0479
    3.0000    0.0361
    4.0000    0.9802
    5.0000    0.0304
    6.0000   -0.0566
    7.0000   -0.0793
    8.0000   -0.1557
    9.0000   -0.0128
   10.0000    0.0623
   11.0000    0.0625
   12.0000    0.0268
   13.0000    0.0158
   14.0000    0.0709
   15.0000    0.0102
   16.0000   -0.0769
   17.0000    0.1410
   18.0000    0.0714
   19.0000    0.0272
   20.0000    0.0473

Bounds

Bounds =
    0.2000
   -0.2000

crosscorr(x,y)         % Use the same example, but plot the XCF 
                       % sequence. Note the peak at the 4th lag.
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Example 2.  See “Analysis and Estimation Example Using the Default Model” 
on page 2-15 for another example.

See Also autocorr, parcorr
filter (MATLAB)
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10garcharPurpose Convert finite-order ARMA models to infinite-order autoregressive (AR) 
models

Syntax InfiniteAR = garchar(AR,MA,NumLags)

Description InfiniteAR = garchar(AR,MA,NumLags) computes the coefficients of an 
infinite-order AR model, using the coefficients of the equivalent univariate, 
stationary, invertible, finite-order ARMA(R,M) model as input. garchar 
truncates the infinite-order AR coefficients to accommodate a user-specified 
number of lagged AR coefficients.

Input 
Arguments

 

Output 
Arguments

 

In the following ARMA(R,M) model,  is the return series of interest and 
 the innovations noise process. 

AR R-element vector of autoregressive coefficients associated with 
the lagged observations of a univariate return series modeled 
as a finite-order, stationary, invertible ARMA(R,M) model.

MA M-element vector of moving-average coefficients associated 
with the lagged innovations of a finite-order, stationary, 
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar 
includes in the approximation of the infinite-order AR 
representation. NumLags is an integer scalar and determines 
the length of the infinite-order AR output vector. If 
NumLags = [] or is not specified, the default is 10.

InfiniteAR Vector of coefficients of the infinite-order AR representation      
associated with the finite-order ARMA model specified by the 
AR and MA input vectors. InfiniteAR is a vector of length 
NumLags. The jth element of InfiniteAR is the coefficient of 
the jth lag of the input series in an infinite-order AR 
representation. Note that Box, Jenkins, and Reinsel refer to 
the infinite-order AR coefficients as “  weights.”π

yt{ }
εt{ }
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If you write this model equation as 

you can specify the garchar input coefficient vectors, AR and MA, exactly as you 
read them from the model. In general, the jth elements of AR and MA are the 
coefficients of the jth lag of the return series and innovations processes  
and , respectively. garchar assumes that the current-time-index 
coefficients of  and  are 1 and are not part of AR and MA. 

In theory, you can use the  weights returned in InfiniteAR to approximate 
 as a pure AR process.

Consistently, the jth element of the truncated infinite-order autoregressive 
output vector,  or InfiniteAR(j), is the coefficient of the jth lag of the 
observed return series, , in this equation. See Box, Jenkins, and Reinsel 
[8], Section 4.2.3, pages 106-109. 

Examples For the following ARMA(2,2) model, use garchar to obtain the first 20 weights 
of the infinite-order AR approximation.

From this model, 

AR = [0.5 -0.8] 
MA = [-0.6 0.08]

Since the current-time-index coefficients of  and  are defined to be 1, the 
example omits them from AR and MA. This saves time and effort when you 
specify parameters using the garchset and garchget interfaces. 

PI = garchar([0.5 -0.8], [-0.6 0.08], 20);
PI'

yt φiyt i–
i 1=

R

∑ εt θjεt j–

j 1=

M

∑+ +=

yt φ1yt 1– … φRyt R– εt θ1εt 1– … θMεt M–+ + + + + +=

yt j–
εt j–

yt εt

π
yt

yt πiyt i–
i 1=

∞

∑ εt+=

πj
yt j–

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=

yt εt
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ans =
   -0.1000
   -0.7800
   -0.4600
   -0.2136
   -0.0914
   -0.0377
   -0.0153
   -0.0062
   -0.0025
   -0.0010
   -0.0004
   -0.0002
   -0.0001
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000

See Also garchfit, garchma, garchpred

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.
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10garchcountPurpose Count number of GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Description NumParams = garchcount(Coeff) counts and returns the number of estimated 
coefficients from a specification structure, as returned by garchfit, containing 
coefficient estimates and equality constraint information. garchcount is a 
helper utility designed to support the model selection function aicbic.

Input 
Arguments

Output 
Arguments

Example See “Akaike and Bayesian Information Criteria” on page 8-5.

See Also aicbic, garchdisp, garchfit

Coeff Specification structure containing coefficient estimates and 
equality constraints. Coeff is an output of the estimation 
function garchfit.

NumParams Number of estimated parameters, i.e., coefficients, included in 
the conditional mean and variance specifications, less any 
parameters held constant, as equality constraints, during the 
estimation. The aicbic function needs NumParams to calculate 
the Akaike (AIC) and Bayesian (BIC) statistics. 
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10garchdispPurpose Display estimation results

Syntax garchdisp(Coeff,Errors)

Description garchdisp(Coeff,Errors) displays coefficient estimates, standard errors, and 
T-statistics from a GARCH specification structure that was output by the 
estimation function garchfit. 

This function displays estimation results, and returns no output arguments. 
The tabular display includes parameter estimates, standard errors, and 
T-statistics for each parameter in the conditional mean and variance models. 
Parameters held fixed during the estimation process have the word 'Fixed' 
displayed in the standard error and T-statistic columns, indicating that the 
parameter was set as an equality constraint.

Input 
Arguments

Examples The following code uses garchfit to generate the GARCH specification 
structure Coeff and the standard errors structure Errors for a return series of 
1000 simulated observations based on a GARCH(1,1) model. It then calls 
garchdisp to display the estimation results. Setting 'Display' to 'off' 
suppresses display of the iterative optimization information produced by 
garchfit.

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05,...
                'Display','off');
[e,s,y] = garchsim(spec,1000);
[Coeff,Errors] = garchfit(spec,y);
garchdisp(Coeff,Errors)

  Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
 
  Conditional Probability Distribution: Gaussian
  Number of Model Parameters Estimated: 4

Coeff GARCH specification structure containing estimated coefficients 
and equality constraint information. Coeff is an output of the 
estimation function garchfit. 

Errors Structure containing the estimation errors (i.e., the standard 
errors) of the coefficients in Coeff. Errors is also an output of the 
estimation function garchfit. 
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                               Standard          T     
  Parameter       Value          Error       Statistic 
 -----------   -----------   ------------   -----------
           C    -0.0024759     0.0012919       -1.9165
           K    4.6877e-005    5.3555e-005      0.8753
    GARCH(1)    0.93904        0.041604        22.5707
     ARCH(1)    0.035503       0.015123         2.3477

See Also garchcount, garchfit
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10garchfitPurpose Univariate GARCH process parameter estimation

Syntax [Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Series)
[...] = garchfit(Spec,Series)
[...] = garchfit(Spec,Series,X)
[...] = garchfit(Spec,Series,X,PreInnovations,PreSigmas,PreSeries)
garchfit(...)

Description Given an observed univariate return series, garchfit estimates the 
parameters of a conditional mean specification of ARMAX form, and 
conditional variance specification of GARCH, EGARCH, or GJR form. The 
estimation process infers the innovations (i.e., residuals) from the return 
series, and fits the model specification to the return series by maximum 
likelihood.

[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Series)
models an observed univariate return series as a constant, C, plus GARCH(1,1) 
conditionally Gaussian innovations. For models beyond this simple (yet 
common) model, you must provide model parameters in the GARCH 
specification structure Spec. 

[...] = garchfit(Spec,Series) infers the innovations from the return 
series and fits the model specification, contained in Spec, to the return series 
by maximum likelihood. 

[...] = garchfit(Spec,Series,X) provides a regression component X for the 
conditional mean.

[...] = garchfit(Spec,Series,X,PreInnovations,PreSigmas,PreSeries)
uses presample observations, contained in the time-series column vectors 
PreInnovations, PreSigmas, and PreSeries, to infer the outputs Innovations 
and Sigmas. These vectors form the conditioning set used to initiate the inverse 
filtering, or inference, process. If you provide no explicit presample data, the 
necessary presample observations are derived by conventional time-series 
techniques (see “Automatic Minimization of Transient Effects” on page 4-6). 

If you specify at least one set, but fewer than three sets, of presample data, 
garchsim does not attempt to derive presample observations for those you omit. 
If you specify your own presample data, you must specify all that are necessary 
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for the specified conditional mean and variance models. See “User-Specified 
Presample Observations” on page 5-11.

garchfit(...) with input arguments as shown above but with no output 
arguments, displays the final parameter estimates and standard errors. It also 
produces a tiered plot of the original return series, the inferred innovations, 
and the corresponding conditional standard deviations.

Input 
Arguments

Spec GARCH specification structure containing the conditional 
mean and variance specifications. It also contains the 
optimization parameters needed for the estimation.Create 
this structure by calling garchset, or use the Coeff output 
structure returned by garchfit.

Series Time-series column vector of observations of the 
underlying univariate return series of interest. Series is 
the response variable representing the time series to be 
fitted to conditional mean and variance specifications. The 
last element of Series holds the most recent observation.

X Time-series regression matrix of observed explanatory 
data. Typically, X is a matrix of asset returns (e.g., the 
return series of an equity index), and represents the past 
history of the explanatory data. Each column of X is an 
individual time series used as an explanatory variable in 
the regression component of the conditional mean. In each 
column, the first row contains the oldest observation and 
the last row the most recent. 
The number of valid (non-NaN) most recent observations in 
each column of X must equal or exceed the number of valid 
most recent observations in Series. If the number of valid 
observations in a column of X exceeds that of Series, 
garchfit uses only the most recent observations of X. If 
X = [] or is not specified, the conditional mean has no 
regression component. 
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PreInnovations Time-series column vector of presample innovations that 
garchfit uses to condition the recursive mean and 
variance models. This column vector can have any number 
of rows, provided it contains sufficient observations to 
initialize the mean and variance equations. I.e., if M and Q 
are the number of lagged innovations required by the 
conditional mean and variance equations, respectively, 
then PreInnovations must have at least max(M,Q) rows. If 
the number of rows exceeds max(M,Q), then garchfit uses 
only the last (i.e., most recent) max(M,Q) rows. 

PreSigmas Time-series column vector of positive presample 
conditional standard deviations that garchfit uses to 
condition the recursive variance model. This vector can 
have any number of rows, provided it contains sufficient 
observations to initialize the conditional variance 
equation. I.e., if P and Q are the number of lagged 
conditional standard deviations and lagged innovations 
required by the conditional variance equation, respectively, 
then PreSigmas must have at least P rows for GARCH and 
GJR models, and at least max(P,Q) rows for EGARCH 
models. If the number of rows exceeds the requirement, 
then garchfit uses only the last (i.e., most recent) rows. 

PreSeries Time-series column vector of presample observations of the 
return series of interest that garchfit uses to condition 
the recursive mean model. This vector can have any 
number of rows, provided it contains sufficient 
observations to initialize the conditional mean equation. 
Thus, if R is the number of lagged observations of the 
return series required by the conditional mean equation, 
then PreSeries must have at least R rows. If the number of 
rows exceeds R, then garchfit uses only the last (i.e., most 
recent) R rows. 
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Output 
Arguments

Coeff GARCH specification structure containing the estimated 
coefficients. Coeff is of the same form as the Spec input 
structure. Toolbox functions such as garchset, garchget, 
garchsim, garchinfer, and garchpred can accept either Spec 
or Coeff as input arguments.

Errors Structure containing the estimation errors (i.e., the standard 
errors) of the coefficients. Errors is of the same form as the 
Spec and Coeff structures. In the event an error occurs in 
the calculation of the standard errors, all fields associated 
with estimated coefficients are set to NaN.

LLF Optimized log-likelihood objective function value associated 
with the parameter estimates found in Coeff. garchfit 
performs the optimization using the fmincon function of the 
Optimization Toolbox.

Innovations Innovations (i.e., residuals) time-series column vector 
inferred from Series. The size of Innovations is the same as 
the size of Series. In the event of an error, Innovations is a 
vector of NaNs.

Sigmas Conditional standard deviation vector corresponding to 
Innovations. The size of Sigmas is the same as the size of 
Series. In the event of an error, Sigmas is a vector of NaNs.

Summary Structure of summary information about the optimization 
process. The fields and their possible values are 

exitFlag Describes the exit condition:
>0 Log-likelihood objective function
   converged to a solution.
 0 Maximum number of function
   evaluations or iterations was exceeded.
<0 Function did not converge to a solution.

warning One of the following strings:
'No Warnings'
'ARMA Model Is Not
 Stationary/Invertible'
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Note  garchfit calculates the error covariance matrix of the parameter 
estimates Summary.covMatrix, and the corresponding standard errors found 
in the Errors output structure using finite difference approximation. In 
particular, it calculates the standard errors using the outer-product method 
(see Hamilton [8], Section 5.8, bottom of page 143).

Example 1 The following code uses garchfit to estimate the parameters for a return 
series of 1000 simulated observations based on a GARCH(1,1) model. Because 
the 'Display' parameter defaults to 'on', garchfit displays diagnostic and 
iterative information.

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05);
[e,s,y] = garchsim(spec,1000);
[Coeff,Errors] = garchfit(spec,y);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Diagnostic Information 

Number of variables: 4

converge One of the following strings:
'Function Converged to a Solution'
'Function Did NOT Converge'
'Maximum Function Evaluations or
 Iterations Reached'

constraints One of the following strings:
'No Boundary Constraints'
'Boundary Constraints Active; Errors
 May Be Inaccurate'

covMatrix Covariance matrix of the parameter 
estimates

iterations Number of iterations

functionCalls Number of function evaluations

lambda Structure, output by fmincon, containing 
the Lagrange multipliers at the solution x
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Functions 
 Objective:                          garchllfn
 Gradient:                           finite-differencing
 Hessian:                            finite-differencing (or Quasi-Newton)
 Nonlinear constraints:              armanlc
 Gradient of nonlinear constraints:  finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints:   0
 
 Number of linear inequality constraints:    1
 Number of linear equality constraints:      0
 Number of lower bound constraints:          4
 Number of upper bound constraints:          4

Algorithm selected
   medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 End diagnostic information 

                             max              Directional  First-order 
Iter F-count   f(x)   constraint   Step-size   derivative   optimality  Procedure
  1    22  -1762.62  -9.975e-005    0.000488    1.32e+004    1.47e+004
  2    35  -1763.04  -9.897e-005     0.00781          126    2.13e+005
  3    43  -1764.69  -7.423e-005        0.25         4.19    1.28e+005
  4    57  -1764.72  -7.477e-005     0.00391         6.92    1.12e+005
  5    64  -1765.27  -4.128e-005         0.5        0.228    3.59e+003
  6    78  -1765.28  -4.751e-005     0.00391         3.34    2.98e+004
  7    89  -1765.28  -4.617e-005      0.0313       0.0725    2.91e+004
  8   101  -1765.29  -4.927e-005      0.0156         0.39           84
  9   107  -1765.29   -4.73e-005           1    -0.000969         6.06
 10   114  -1765.29  -4.668e-005         0.5    -0.000135          213
 11   134  -1765.29  -4.668e-005   -6.1e-005    -2.4e-005          213  Hessian modified
 12   140  -1765.29  -4.668e-005           1    1.39e-007         19.5  Hessian modified twice
 Optimization terminated successfully:
 Magnitude of directional derivative in search direction 
  less than 2*options.TolFun and maximum constraint violation 
  is less than options.TolCon
 No Active Constraints

Example 2 Using the same data as above, the example sets 'Display' to 'off' and calls 
garchfit with no output arguments. In this case, garchfit displays the final 
parameter estimates and standard errors, then produces a tiered plot.
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spec = garchset(spec,'Display','off');
garchfit(spec,y)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

                              Standard          T     
 Parameter       Value          Error       Statistic 
-----------   -----------   ------------   -----------
          C    -0.0024759     0.0012919       -1.9165
          K    4.6877e-005    5.3555e-005      0.8753
   GARCH(1)    0.93904        0.041604        22.5707
    ARCH(1)    0.035503       0.015123         2.3477

 Log Likelihood Value: 1765.29
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See Also garchpred, garchset, garchsim
fmincon (in the Optimization Toolbox)

References [1] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for 
Speculative Prices and Rates of Return,” Review of Economics and Statistics, 
Vol. 69, 1987, pp 542-547.
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10garchgetPurpose Retrieve a GARCH specification structure parameter

Syntax ParameterValue = garchget(Spec,'ParameterName')

Description ParameterValue = garchget(Spec,'ParameterName') returns the value of 
the specified parameter from the GARCH specification structure Spec. 

Input 
Arguments

Output 
Arguments

Examples Spec = garchset('P',1,'Q',1)  % Create a GARCH(P=1,Q=1) model.
Spec = 
          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: []
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []

P = garchget(Spec,'P')        % Retrieve the order P.
P =
     1

See Also garchfit, garchpred, garchset, garchsim

Spec GARCH specification structure returned by garchset, or 
the output (Coeff) of the estimation function garchfit.

ParameterName String indicating the name of the parameter whose value 
garchget extracts from Spec. It is sufficient to type only 
the leading characters that uniquely identify a parameter 
name. See garchset for a list of valid parameter names. 
ParameterName is case insensitive. 

ParameterValue Value of the named parameter extracted from the 
structure Spec. garchget returns the appropriate model 
default value if the specified parameter is not defined in 
the specification structure. 
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10garchinferPurpose Infer GARCH innovation processes from return series

Syntax [Innovations,Sigmas,LLF] = garchinfer(Spec,Series)
[...] = garchinfer(Spec,Series,X)
[...] = garchinfer(Spec,Series,X,...
                   PreInnovations,PreSigmas,PreSeries)

Description [Innovations,Sigmas,LLF] = garchinfer(Spec,Series) given a conditional 
mean specification of ARMAX form and conditional variance specification of 
GARCH, EGARCH, or GJR form, infers the innovations and conditional 
standard deviations from an observed univariate return series. Since 
garchinfer is an interface to the appropriate log-likelihood objective function, 
the log-likelihood value is also computed for convenience.

[...] = garchinfer(Spec,Series,X) also accepts a time-series regression 
matrix X of observed explanatory data. garchinfer treats each column of X as 
an individual time series, and uses it as an explanatory variable in the 
regression component of the conditional mean.

[...] = garchinfer(Spec,Series,X,PreInnovations,PreSigmas, 
PreSeries) uses presample observations, contained in the time-series 
matrices or column vectors PreInnovations, PreSigmas, and PreSeries, to 
infer the outputs Innovations and Sigmas. These vectors form the conditioning 
set used to initiate the inverse filtering, or inference, process. 

If you specify the presample data as matrices, the number of columns 
(realizations) of each must be the same as the number of columns (realizations) 
of the Series input. In this case, the presample information of a given column 
is used to infer the residuals and standard deviations of the corresponding 
column of Series. If you specify the presample data as column vectors, the 
vectors are applied to each column of Series. 

If you provide no explicit presample data, the necessary presample 
observations are derived by conventional time-series techniques (see 
“Automatic Minimization of Transient Effects” on page 4-6.

If you specify at least one set, but fewer than three sets, of presample data, 
garchsim does not attempt to derive presample observations for those you omit. 
If you specify your own presample data, you must specify all that are necessary 
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for the specified conditional mean and variance models. See “User-Specified 
Presample Observations” on page 5-11.

Input 
Arguments

Spec GARCH specification structure containing the conditional 
mean and variance specifications. It also contains the 
optimization parameters needed for the estimation.Create 
this structure by calling garchset, or use the Coeff output 
structure returned by garchfit.

Series Time-series matrix or column vector of observations of the 
underlying univariate return series of interest. Series is 
the response variable representing the time series fitted to 
conditional mean and variance specifications. Each 
column of Series in an independent realization (i.e., path). 
The last row of Series holds the most recent observation 
of each realization.

X Time-series regression matrix of explanatory variables. 
Typically, X is a regression matrix of asset returns (e.g., the 
return series of an equity index). Each column of X is an 
individual time series used as an explanatory variable in 
the regression component of the conditional mean. In each 
column, the first row contains the oldest observation and 
the last row the most recent. 
The number of valid (non-NaN) observations below the last 
NaN in each column of X must equal or exceed the number 
of valid observations below the last NaN in Series. If the 
number of valid observations in a column of X exceeds that 
of Series, garchinfer uses only the most recent. If X = [] 
or is not specified, the conditional mean has no regression 
component.
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PreInnovations Time-series matrix or column vector of presample 
innovations on which the recursive mean and variance 
models are conditioned. This array can have any number 
of rows, provided it contains sufficient observations to 
initialize the mean and variance equations. I.e., if M and Q 
are the number of lagged innovations required by the 
conditional mean and variance equations, respectively, 
then PreInnovations must have at least max(M,Q) rows. 
If the number of rows exceeds max(M,Q), then only the last 
(i.e., most recent) max(M,Q) rows are used. If 
PreInnovations is a matrix, then the number of columns 
must be the same as the number of columns in Series. If 
PreInnovations is a column vector, then the vector is 
applied to each column (i.e., realization) of Series.
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PreSigmas Time-series matrix or column vector of positive presample 
conditional standard deviations on which the recursive 
variance model is conditioned. This array can have any 
number of rows, provided it contains sufficient 
observations to initialize the conditional variance 
equation. I.e., if P and Q are the number of lagged 
conditional standard deviations and lagged innovations 
required by the conditional variance equation, 
respectively, then PreSigmas must have at least P rows for 
GARCH and GJR models, and at least max(P,Q) rows for 
EGARCH models. 
If the number of rows exceeds the requirement, then only 
the last (i.e., most recent) rows are used. If PreSigmas is a 
matrix, then the number of columns must be the same as 
the number of columns in Series. If PreSigmas is a column 
vector, then the vector is applied to each column (i.e., 
realization) of Series.

PreSeries Time-series matrix or column vector of presample 
observations of the return series of interest on which the 
recursive mean model is conditioned. This array can have 
any number of rows, provided it contains sufficient 
observations to initialize the conditional mean equation. 
Thus, if R is the number of lagged observations of the 
return series required by the conditional mean equation, 
then PreSeries must have at least R rows. If the number 
of rows exceeds R, then only the last (i.e., most recent) R 
rows are used. If PreSeries is a matrix, then the number 
of columns must be the same as the number of columns in 
Series. If PreSeries is a column vector, then the vector is 
applied to each column (i.e., realization) of Series.
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Output 
Arguments

Remarks garchinfer performs essentially the same operation as garchfit, but without 
the optimization. While garchfit calls the appropriate log-likelihood objective 
function indirectly via the iterative numerical optimizer, garchinfer allows 
you direct access to the same suite of log-likelihood objective functions.

Note that, for garchinfer, inputs Series, PreInnovations, PreSigmas, and 
PreSeries, and outputs Innovations and Sigmas, are column-oriented 
time-series arrays in which each column is associated with a unique 
realization, or random path. For garchfit, these same inputs and outputs 
cannot have multiple columns; i.e., they must all represent single realizations 
of a univariate time series. 

For additional details about estimation and inverse filtering, see “Maximum 
Likelihood Estimation” on page 5-2 and “Presample Observations” on 
page 5-11.

Examples See “Presample Data and Transient Effects” on page 5-23, “Presample 
Observations” on page 6-5, and “Estimating the Model” on page 9-2.

See Also garchfit, garchpred, garchset, garchsim

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Innovations Innovations time-series matrix inferred from Series. 
The size of Innovations is the same as the size of 
Series.

Sigmas Conditional standard deviation time-series matrix 
corresponding to Innovations. The size of Sigmas is the 
same as the size of Series.

LLF Row vector of log-likelihood objective function values for 
each realization of Series. The length of LLF is the same 
as the number of columns in Series. 
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10garchmaPurpose Convert finite-order ARMA models to infinite-order moving average (MA) 
models

Syntax InfiniteMA = garchma(AR,MA,NumLags)

Description InfiniteMA = garchma(AR,MA,NumLags) computes the coefficients of an 
infinite-order MA model, using the coefficients of the equivalent univariate, 
stationary, invertible, finite-order ARMA(R,M) model as input. garchma 
truncates the infinite-order MA coefficients to accommodate the number of 
lagged MA coefficients you specify in NumLags. 

This function is particularly useful for calculating the standard errors of 
minimum mean square error forecasts of univariate ARMA models. 

Arguments

Output 
Arguments

In the following ARMA(R,M) model,  is the return series of interest and 
 the innovations noise process. 

AR R-element vector of autoregressive coefficients associated 
with the lagged observations of a univariate return series 
modeled as a finite-order, stationary, invertible ARMA(R,M) 
model.

MA M-element vector of moving-average coefficients associated 
with the lagged innovations of a finite-order, stationary, 
invertible, univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma 
includes in the approximation of the infinite-order MA 
representation. NumLags is an integer scalar and determines 
the length of the infinite-order MA output vector. If 
NumLags = [] or is not specified, the default is 10.

InfiniteMA Vector of coefficients of the infinite-order MA representation 
associated with the finite-order ARMA model specified by AR 
and MA. InfiniteMA is a vector of length NumLags. The jth 
element of InfiniteMA is the coefficient of the jth lag of the 
innovations noise sequence in an infinite-order MA 
representation. Note that Box, Jenkins, and Reinsel refer to 
the infinite-order MA coefficients as the “  weights.”ψ

yt{ }
εt{ }
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If you write this model equation as 

you can specify the garchma input coefficient vectors, AR and MA, exactly as you 
read them from the model. In general, the jth elements of AR and MA are the 
coefficients of the jth lag of the return series and innovations processes  
and , respectively. garchma assumes that the current-time-index 
coefficients of  and  are 1 and are not part of AR and MA. 

In theory, you can use the  weights returned in InfiniteMA to approximate 
 as a pure MA process.

Consistently, the jth element of the truncated infinite-order moving-average 
output vector,  or InfiniteMA(j), is the coefficient of the jth lag of the 
innovations process, , in this equation. See Box, Jenkins, and Reinsel [8], 
Section 5.2.2, pages 139-141.

Examples Suppose you want a forecast horizon of 10 periods for the following ARMA(2,2) 
model. 

To obtain probability limits for these forecasts, use garchma to compute the 
first 9 (i.e., 10 - 1) weights of the infinite order MA approximation.

From the model, AR = [0.5 -0.8] and MA = [-0.6 0.08]. 

Since the current-time-index coefficients of  and  are 1, the example omits 
them from AR and MA. This saves time and effort when you specify parameters 
via the garchset and garchget user interfaces. 
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PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);
PSI'

ans =

   -0.1000
   -0.7700
   -0.3050
    0.4635
    0.4758
   -0.1329
   -0.4471
   -0.1172
    0.2991

See Also garchar, garchpred

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.
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10garchplotPurpose Plot matched univariate innovations, volatility, and return series

Syntax garchplot(Innovations,Sigmas,Series)

Description garchplot lets you visually compare matched innovations, conditional 
standard deviations, and returns. It provides a convenient way to compare 
innovations series, simulated using garchsim or estimated using garchfit, 
with companion conditional standard deviations, or returns series. You can 
also use garchplot to plot forecasts, computed using garchpred, of conditional 
standard deviations and returns.

In general, garchplot produces a tiered plot of matched time series. garchplot 
does not display an empty or missing input array; i.e., garchplot allocates no 
space in the tiered figure window to the array. garchplot displays valid 
(nonempty) Innovations, Sigmas, and Series arrays in the top, center, and 
bottom plots, respectively. Since garchplot assigns a title and label to each 
plot according to its position in the argument list, you can ensure correct plot 
annotation by using empty matrices ([]) as placeholders.

You can plot several realizations of each array simultaneously because 
garchplot color codes corresponding realizations of each input array. 
However, the plots can become cluttered if you try to display more than a few 
realizations of each input at one time.

Input 
Arguments

Innovations Time-series column vector or matrix of innovations. As a 
column vector, Innovations represents a single realization of 
a univariate time series in which the first element contains 
the oldest observation and the last element the most recent. 
As a matrix, each column of Innovations represents a single 
realization of a univariate time series in which the first row 
contains the oldest observation of each realization and the 
last row the most recent. If Innovations = [], then 
Innovations is not displayed.
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Examples Example 1.  Assume that Innovations, Sigmas, and Series are not empty.

garchplot(Innovations)               % Plot Innovations only.

garchplot(Innovations,[],Series)     % Plot Innovations and
                                     % Series only.

garchplot([],Sigmas,Series)          % Plot Sigmas and Series
                                     % only.

garchplot(Innovations,Sigmas,Series) % Plot all three vectors.

garchplot(Innovations,Sigmas,[])     % Plot Innovations and
                                     % Sigmas only.

garchplot(Innovations,Sigmas)        % Plot Innovations and
                                     % Sigmas only.

Example 2.  The following code uses the default GARCH(1,1) model to model 
the Deutschmark/British pound foreign exchange series (see “Data Sets” on 
page 1-11). It then uses the estimated model to generate a single path of 1000 
observations for return series, innovations, and conditional standard deviation 
processes.

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
[e,s,y] = garchsim(coeff,1000);
garchplot(e,s,y)

Sigmas Time-series column vector or matrix of conditional standard 
deviations. In general, Innovations and Sigmas are the same 
size, and form a matching pair of arrays. If Sigmas = [], 
then Sigmas is not displayed.

Series Time-series column vector or matrix of asset returns. In 
general, Series is the same size as Innovations and Sigmas, 
and is organized in exactly the same manner. If Series = [] 
or is not specified, then Series is not displayed.
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See Also garchfit, garchpred, garchsim

0 200 400 600 800 1000
−0.05

0

0.05
Innovations

In
no

va
tio

n

0 200 400 600 800 1000
0

0.01

0.02
Conditional Standard Deviations

S
ta

nd
ar

d 
D

ev
ia

tio
n

0 200 400 600 800 1000
−0.05

0

0.05
Returns

R
et

ur
n



garchpred

10-44

10garchpredPurpose Univariate GARCH process forecasting

Syntax [SigmaForecast,MeanForecast] = garchpred(Spec,Series,NumPeriods)
[SigmaForecast,MeanForecast] = ...
               garchpred(Spec,Series,NumPeriods,X,XF)
[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = ...
               garchpred(Spec,Series,NumPeriods)

Description garchpred forecasts the conditional mean of the univariate return series and 
the standard deviation of the innovations NumPeriods into the future, using 
specifications for the conditional mean and variance of an observed univariate 
return series as input. garchpred also computes volatility forecasts of asset 
returns over multiperiod holding intervals, and the standard errors of 
conditional mean forecasts. The conditional mean is of general ARMAX form 
and the conditional variance can be of GARCH, EGARCH, or GJR form. (See 
“Conditional Mean and Variance Models” on page 2-6.)

[SigmaForecast,MeanForecast] = garchpred(Spec,Series,NumPeriods)
uses the conditional mean and variance specifications defined in Spec to 
forecast the conditional mean, MeanForecast, of the univariate return series 
and the standard deviation, SigmaForecast, of the innovations NumPeriods 
into the future. The NumPeriods default is 1.

[SigmaForecast,MeanForecast] = 
garchpred(Spec,Series,NumPeriods,X,XF) includes the time-series 
regression matrix of observed explanatory data X and the time-series 
regression matrix of forecasted explanatory data XF in the calculation of 
MeanForecast. For MeanForecast, if you specify X, you must also specify XF. 
Typically, X is the same regression matrix of observed returns, if any, that you 
used for simulation (garchsim) or estimation (garchfit). 

[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = 
garchpred(Spec,Series,Numperiods) also computes the volatility forecasts, 
SigmaTotal, of the cumulative returns for assets held for multiple periods, and 
the standard errors MeanRMSE associated with MeanForecast.
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Input 
Arguments

Spec Specification structure for the conditional mean and variance 
models. You can create Spec using the function garchset or 
the estimation function garchfit.

Series Matrix of observations of the underlying univariate return 
series of interest for which garchpred generates forecasts. 
Each column of Series is an independent realization (i.e., 
path). The last row of Series holds the most recent 
observation of each realization. garchpred treats those 
observations as valid that are below the most recent NaN in 
any column.
garchpred assumes that Series is a stationary stochastic 
process. It also assumes that the ARMA component of the 
conditional mean model (if any) is stationary and invertible.

NumPeriods Positive scalar integer representing the forecast horizon of 
interest. It is expressed in periods, and should be compatible 
with the sampling frequency of Series. If NumPeriods = [] or 
is not specified, the default is 1.
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X Time-series regression matrix of observed explanatory data 
that represents the past history of the explanatory data. 
Typically, X is a regression matrix of asset returns, e.g., the 
return series of an equity index. Each column of X is an 
individual time series used as an explanatory variable in the 
regression component of the conditional mean. In each 
column, the first row contains the oldest observation and the 
last row the most recent.
The most recent number of valid (non-NaN) observations in 
each column of X must equal or exceed the most recent number 
of valid observations in Series. If the number of valid 
observations in a column of X exceeds that of Series, 
garchpred uses only the most recent observations of X. 
If X = [] or is not specified, the conditional mean has no 
regression component.

XF Time-series matrix of forecasted explanatory data. XF 
represents the evolution into the future of the same 
explanatory data found in X. Because of this, XF and X must 
have the same number of columns. In each column of XF, the 
first row contains the one-period-ahead forecast, the second 
row contains the two-period-ahead forecast, and so on.
The number of rows (forecasts) in each column (time series) of 
XF must equal or exceed the forecast horizon NumPeriods. 
When the number of forecasts in XF exceeds NumPeriods, 
garchpred uses only the first NumPeriods forecasts. 
If XF = [] or is not specified, the conditional mean forecast 
(MeanForecast) has no regression component. 
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Output 
Arguments

SigmaForecast Matrix of conditional standard deviations of future 
innovations (i.e., model residuals) on a per period basis. This 
matrix represents the standard deviations derived from the 
minimum mean square error (MMSE) forecasts associated 
with the recursive volatility model, e.g., 'GARCH', 'GJR', or 
'EGARCH', specified for the 'VarianceModel' parameter in 
Spec. For GARCH(P,Q) and GJR(P,Q) models, 
SigmaForecast is the square root of the MMSE conditional 
variance forecasts. For EGARCH(P,Q) models, 
SigmaForecast is the square root of the exponential of the 
MMSE forecasts of the logarithm of conditional variance.
SigmaForecast has NumPeriods rows and the same number 
of columns as Series. The first row contains the standard 
deviation in the first period for each realization of Series, 
the second row contains the standard deviation in the 
second period, and so on. If you specify a forecast horizon 
greater than 1, i.e., NumPeriods > 1, garchpred returns the 
per-period standard deviations of all intermediate horizons 
as well; in this case, the last row contains the standard 
deviation at the specified forecast horizon.

MeanForecast Matrix of MMSE forecasts of the conditional mean of Series 
on a per-period basis. MeanForecast is the same size as 
SigmaForecast. The first row contains the forecast in the 
first period for each realization of Series, the second row 
contains the forecast in the second period, and so on. 
Both X and XF must be nonempty for MeanForecast to have a 
regression component. If X and XF are empty ([]) or not 
specified, MeanForecast is based on an ARMA model. If you 
specify X and XF, MeanForecast is based on the full ARMAX 
model.
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SigmaTotal Matrix of MMSE volatility forecasts of Series over 
multiperiod holding intervals. SigmaTotal is the same size 
as SigmaForecast. The first row contains the standard 
deviation of returns expected for assets held for one period 
for each realization of Series, the second row contains the 
standard deviation of returns expected for assets held for 
two periods, and so on. The last row contains the standard 
deviations of the cumulative returns obtained if an asset 
was held for the entire NumPeriods forecast horizon. 
If you specify X or XF, SigmaTotal = [].

MeanRMSE Matrix of root mean square errors (RMSE) associated with 
MeanForecast. That is, MeanRMSE is the conditional standard 
deviation of the forecast errors (i.e., the standard error of 
the forecast) of the corresponding MeanForecast matrix. 
MeanRMSE is the same size as MeanForecast and garchpred 
organizes it in exactly the same manner, provided the 
conditional mean is modeled as a stationary/invertible 
ARMA process. 
If you specify X or XF, MeanRMSE = [].
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Note  garchpred calls the function garchinfer to access the past history of 
innovations and conditional standard deviations inferred from Series. If you 
need the innovations and conditional standard deviations, call garchinfer 
directly.

Notes EGARCH(P,Q) models represent the logarithm of the conditional variance as 
the output of a linear filter. As such, the minimum mean square error forecasts 
derived from EGARCH(P,Q) models are optimal for the logarithm of the 
conditional variance, but are generally downward-biased forecasts of the 
conditional variance process itself. Since the output arrays SigmaForecast, 
SigmaTotal, and MeanRMSE are based upon the conditional variance forecasts, 
these outputs generally underestimate their true expected values for 
conditional variances derived from EGARCH(P,Q) models. The important 
exception is the one-period-ahead forecast, which is unbiased in all cases. 

Examples See “Examples” on page 6-8 and “Forecasting” on page 9-4.

See Also garchfit, garchinfer, garchma, garchset, garchsim
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10garchsetPurpose Create or modify GARCH specification structure

Syntax Spec = garchset('Parameter1',Value1,'Parameter2',Value2,...)
Spec = garchset(OldSpec,'Parameter1',Value1,...)
Spec = garchset
garchset

Description Spec = garchset('Parameter1',Value1,'Parameter2',Value2,...)
creates a GARCH model specification structure Spec using the 
parameter-value pairs specified in the input argument list. Use garchget to 
retrieve the values of specification structure parameters.

Spec = garchset(OldSpec,'Parameter1',Value1,...) modifies an existing 
GARCH specification structure OldSpec by changing the named parameters to 
the specified values. garchset returns an error if the new parameter values 
would create an invalid model.

Spec = garchset creates a GARCH specification structure Spec for the 
GARCH Toolbox default model. For this model, the conditional mean equation 
is a simple constant plus additive noise, while the conditional variance 
equation of the additive noise is a GARCH(1,1) model. You can use this Spec as 
input to garchfit, but it is invalid as input to garchinfer, garchpred, and 
garchsim. 

garchset (with no input arguments and no output arguments) displays all 
parameter names and the default values where appropriate.

Input 
Arguments

Parameter1,
Parameter2,
...

String representing a valid parameter field of the output 
structure Spec. “Parameters” on page 10-52 lists the valid 
parameters and describes their allowed values. A parameter 
name needs to include only sufficient leading characters to 
uniquely identify the parameter. Parameter names are case 
insensitive.

Value1,
Value2,...

Value assigned to the corresponding Parameter.

OldSpec Existing GARCH specification structure as generated by 
garchset or garchfit. 
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Output 
Arguments

Parameters A GARCH specification structure includes these parameters. Except as noted, 
garchset sets all parameters you do not specify to their respective defaults.

• “General Parameters” on page 10-52

• “Conditional Mean Parameters” on page 10-52

• “Conditional Variance Parameters” on page 10-53

• “Equality Constraint Parameters” on page 10-54

• “Optimization Parameters” on page 10-55

General Parameters

Conditional Mean Parameters
If you specify coefficient vectors AR and MA, but not their corresponding model 
orders R and M, garchset infers the values of the model orders from the lengths 
of the coefficient vectors.

Spec GARCH specification structure containing the style, orders, and 
coefficients (if specified) of the conditional mean and variance 
specifications of a GARCH model. It also contains the parameters 
associated with the function fmincon in the Optimization Toolbox.

Parameter Value Description

Comment String.
Default is a model 
summary.

User-defined summary 
comment. An example of the 
default is 'Mean: ARMAX(0,0,?); 
Variance: GARCH(1,1)'. 

Distribution 'T' or 'Gaussian'. 
Default is 'Gaussian'.

Conditional distribution of 
innovations.

DoF Scalar. Default = []. Degrees of freedom parameter 
for t distributions (must be > 2).

Parameter Value Description

R Nonnegative integer 
scalar. Default is 0. 

Autoregressive model order of an 
ARMA(R,M) model.
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Conditional Variance Parameters
If you specify coefficient vectors GARCH and ARCH, but not their corresponding 
model orders P and Q, garchset infers the values of the model orders from the 
lengths of the coefficient vectors.

M Nonnegative integer 
scalar. Default is 0.

Moving-average model order of an 
ARMA(R,M) model.

C Scalar coefficient. 
Default is []. 

Conditional mean constant. If 
C = NaN, garchfit ignores C, 
effectively fixing C = 0, without 
requiring initial estimates for the 
remaining parameters.

AR R-element vector. 
Default is [].

Conditional mean autoregressive 
coefficients that imply a stationary 
polynomial.

MA M-element vector. 
Default is [].

Conditional mean moving-average 
coefficients that imply an invertible 
polynomial.

Regress Vector of coefficients. 
Default is [].

Conditional mean regression 
coefficients.

Parameter Value Description

VarianceModel 'GARCH', 'EGARCH', 
'GJR', or 'Constant'. 
Default is 'GARCH'. 

Conditional variance model.

P Nonnegative integer 
scalar. P must be 0 if Q 
is 0. Default is 0.

Model order of GARCH(P,Q), 
EGARCH(P,Q), and GJR(P,Q) 
models.

Q Nonnegative integer 
scalar. Default is 0.

Model order of GARCH(P,Q), 
EGARCH(P,Q), and GJR(P,Q) 
models.

Parameter Value Description
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Equality Constraint Parameters
These parameters are used only by garchfit during estimation. Use these 
parameters cautiously. The problem can experience difficulty converging if the 
fixed value is not well suited to the data at hand. 

K Scalar coefficient. 
Default is [].

Conditional variance constant.

GARCH P-element vector. 
Default is [].

Coefficients related to lagged 
conditional variances.

ARCH Q-element vector. 
Default is [].

Coefficients related to lagged 
innovations (i.e., residuals). 

Leverage Q-element vector. 
Default is [].

Leverage coefficients for 
asymmetric EGARCH(P,Q) and 
GJR(P,Q) models.

Parameter Value Description

FixDoF Logical scalar. 
Default is [].

Equality constraint indicator for 
DoF parameter.

FixC Logical scalar. 
Default is [].

Equality constraint indicator for 
C constant.

FixAR R-element logical vector. 
Default is [].

Equality constraint indicator for 
AR coefficients.

FixMA M-element logical vector. 
Default is [].

Equality constraint indicator for 
MA coefficients.

FixRegress Logical vector. 
Default is [].

Equality constraint indicator for 
the REGRESS coefficients.

FixK Logical scalar. 
Default is [].

Equality constraint indicator for 
the K constant.

Parameter Value Description
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Optimization Parameters
garchfit uses these parameters in calling the Optimization Toolbox function 
fmincon during estimation. 

Examples This example creates a GARCH(1,1) model, then changes it to a GARCH(1,2) 
model. In each case, it displays the relevant fields in the specification 
structure. Use garchget to retrieve the values of individual fields.

FixGARCH P-element logical vector. 
Default is [].

Equality constraint indicator for 
the GARCH coefficients.

FixARCH Q-element logical vector. 
Default is [].

Equality constraint indicator for 
the ARCH coefficients.

FixLeverage Q-element logical vector. 
Default is [].

Equality constraint indicator for 
Leverage coefficients.

Parameter Value Description

Display 'on' or 'off'. 
Default is 'on'.

Display iterative optimization 
information.

MaxFunEvals Positive integer. 
Default = (100*number 
of estimated 
parameters). 

Maximum number of objective 
function evaluations allowed.

MaxIter Positive integer. 
Default is 400.

Maximum number of iterations 
allowed.

TolCon Positive scalar. 
Default is 1e-007.

Termination tolerance on the 
constraint violation.

TolFun Positive scalar. 
Default is 1e-006.

Termination tolerance on the 
objective function value.

TolX Positive scalar. 
Default is 1e-006.

Termination tolerance on 
parameter estimates.

Parameter Value Description
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spec = garchset('P',1,'Q',1)   % Create a GARCH(P=1,Q=1) model.

spec = 

          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
     Distribution: 'Gaussian'
                C: []
    VarianceModel: 'GARCH'
                P: 1
                Q: 1
                K: []
            GARCH: []
             ARCH: []

spec = garchset(spec,'Q',2)    % Change it to a GARCH(P=1,Q=2)
                               % model.
spec = 

          Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,2)'
     Distribution: 'Gaussian'
                C: []
    VarianceModel: 'GARCH'
                P: 1
                Q: 2
                K: []
            GARCH: []
             ARCH: []

See Also garchfit, garchget, garchpred, garchsim
fmincon (in the Optimization Toolbox)
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10garchsimPurpose Univariate GARCH process simulation

Syntax [Innovations,Sigmas,Series] = garchsim(Spec)
[...] = garchsim(Spec,NumSamples,NumPaths)
[...] = garchsim(Spec,NumSamples,NumPaths,State)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance,...
                 PreInnovations,PreSigmas,PreSeries)

Description [Innovations,Sigmas,Series] = garchsim(Spec), given specifications for 
the conditional mean and variance of a univariate time series, simulates a 
sample path with 100 observations for the return series, innovations, and 
conditional standard deviation processes. The conditional mean can be of 
general ARMA form and the conditional variance of general GARCH, 
EGARCH, or GJR form.

[...] = garchsim(Spec,NumSamples,NumPaths) simulates NumPaths sample 
paths. Each path is sampled at NumSamples observations.

[...] = garchsim(Spec,NumSamples,NumPaths,State) specifies the state of 
the standardized (zero mean, unit variance) , independent, indentically 
distributed random noise process.

[...] = garchsim(Spec,NumSamples,NumPaths,State,X) accepts a 
time-series regression matrix X of observed explanatory data. garchsim treats 
each column of X as an individual time series, and uses it as an explanatory 
variable in the regression component of the conditional mean.

[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
accepts a scalar transient response tolerance, such that Tolerance > 0 and ≤ 1. 
garchsim estimates the number of observations needed for the magnitude of 
the impulse response, which begins at 1, to decay below the Tolerance value. 
The number of observations associated with the transient decay period is 
subject to a maximum of 10,000 to prevent out-of-memory conditions. 
Tolerance is ignored when you specify presample observations 
(PreInnovations, PreSigmas, and PreSeries).
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Use Tolerance to manage the conflict between transient minimization and 
memory usage. Smaller Tolerance values generate output processes that more 
closely approximate true steady-state behavior, but require more memory for 
the additional filtering required. Conversely, larger Tolerance values require 
less memory, but produce outputs in which transients tend to persist.

If you do not explicitly specify presample data (see below), the impulse 
response estimates are based on the magnitude of the largest eigenvalue of the 
autoregressive polynomial. 

[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance,...
PreInnovations,PreSigmas,PreSeries) uses presample observations, 
contained in the time-series matrices or column vectors PreInnovations, 
PreSigmas, and PreSeries, to simulate the outputs Innovations, Sigmas, and 
Series, respectively. When specified, these presample arrays are used to 
initiate the filtering process, and thus form the conditioning set upon which the 
simulated realizations are based.

If you specify the presample data as matrices, they must have NumPaths 
columns. garchsim uses the presample information from a given column to 
initiate the simulation of the corresponding column of the Innovations, 
Sigmas, and Series outputs. If you specify the presample data as column 
vectors, the vectors are applied to each column of the corresponding 
Innovations, Sigmas, and Series outputs. 

If you provide no explicit presample data, the necessary presample 
observations are derived automatically (see “Automatic Minimization of 
Transient Effects” on page 4-6.

PreInnovations and PreSigmas are usually companion inputs. Although both 
are optional, when specified, they are typically entered together. A notable 
exception would be a GARCH(0,Q) (i.e., an ARCH(Q)) model in which the 
conditional variance equation does not require lagged conditional variance 
forecasts. Similarly, PreSeries is only necessary when you want to simulate 
the output return Series, and when the conditional mean equation has an 
autoregressive component.

If the conditional mean or the conditional variance equation (“Conditional 
Mean and Variance Models” on page 2-6) is not recursive in any way, then 
certain presample information is unnecessary to jump-start the models. 
However, specifying redundant presample information is not an error, and 
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garchsim ignores any presample observations you specify for models that 
require no such information.

Input 
Arguments

Spec GARCH specification structure for the conditional mean 
and variance models. You create Spec by calling the 
function garchset or the estimation function garchfit. 
The conditional mean can be of general ARMAX form and 
the conditional variance of general GARCH form.

NumSamples (optional) Positive integer indicating the number of 
observations garchsim generates for each path of the 
Innovations, Sigmas, and Series outputs. If 
NumSamples = [] or is not specified, the default is 100.

NumPaths (optional) Positive integer indicating the number of sample 
paths (realizations) garchsim generates for the 
Innovations, Sigmas, and Series outputs. If 
NumPaths = [] or is not specified, the default is 1; i.e. 
Innovations, Sigmas and Series are column vectors.

PreInnovations Time-series matrix or column vector of presample 
innovations on which the recursive mean and variance 
models are conditioned. This array can have any number 
of rows, provided it contains sufficient observations to 
initialize the mean and variance equations. That is, if M 
and Q are the number of lagged innovations required by 
the conditional mean and variance equations, respectively, 
then PreInnovations must have at least max(M,Q) rows. 
If the number of rows exceeds max(M,Q), then only the last 
(i.e., most recent) max(M,Q) rows are used. If 
PreInnovations is a matrix, then it must have NumPaths 
columns.
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PreSigmas Time-series matrix or column vector of positive presample 
conditional standard deviations on which the recursive 
variance model is conditioned. This array can have any 
number of rows, provided it contains sufficient 
observations to initialize the conditional variance 
equation. That is, if P and Q are the number of lagged 
conditional standard deviations and lagged innovations 
required by the conditional variance equation, 
respectively, then PreSigmas must have at least P rows for 
GARCH and GJR models, and at least max(P,Q) rows for 
EGARCH models. 
If the number of rows exceeds the requirement, then only 
the last (i.e., most recent) rows are used. If PreSigmas is a 
matrix, then it must have NumPaths columns.

PreSeries Time-series matrix or column vector of presample 
observations of the return series of interest on which the 
recursive mean model is conditioned. This array can have 
any number of rows, provided it contains sufficient 
observations to initialize the conditional mean equation. 
Thus, if R is the number of lagged observations of the 
return series required by the conditional mean equation, 
then PreSeries must have at least R rows. If the number 
of rows exceeds R, then only the last (i.e., most recent) R 
rows are used. If PreSeries is a matrix, then it must have 
NumPaths columns.
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State State of the standardized (mean zero, unit variance), 
independent, identically distributed (i.i.d.) noise process 
that drives the output Innovations process (see below). 
State can be a scalar or a matrix. 
When State is a scalar J, it is passed directly to the 
primary random number generators rand and randn, and 
resets each generator to its Jth state.

When State is a matrix, it represents a user-specified 
time-series matrix of standardized, i.i.d. disturbances that 
drive the output Innovations time-series process. As a 
matrix, State must have exactly NumPaths columns and at 
least NumSamples rows in which the first row contains the 
oldest observation and the last row the most recent. 
Additional  presample observations required to minimize 
transients, if any, are  generated automatically based on 
the distribution found in the input specification structure 
Spec and prepended to the input State time-series matrix. 
If State has more observations (rows) than  necessary, 
then only the most recent observations are used.

If State is empty or missing, garchsim uses the current 
states of the random number generators. You can set and 
query these states directly by calling rand and randn. See 
their reference pages for details.



garchsim

10-62

Output 
Arguments

Tolerance Scalar transient response tolerance, such that 
0 < Tolerance ≤ 1. This tolerance parameter is ignored if 
presample conditioning information is specified (see 
PreInnovations, PreSigmas, and PreSeries). If empty or 
missing, the default is 0.01 (i.e., 1%).

X Time-series regression matrix of observed explanatory 
data. Typically, X is a matrix of asset returns (e.g., the 
return series of an equity index), and represents the past 
history of the explanatory data. Each column of X is an 
individual time series used as an explanatory variable in 
the regression component of the conditional mean. In each 
column, the first row contains the oldest observation and 
the last row the most recent. 
If X = [] or is not specified, the conditional mean has no 
regression component. If specified, then at least the most 
recent NumSamples observations of each return series must 
be valid (i.e., non-NaN). When the number of valid 
observations in each series exceeds NumSamples, garchsim 
uses only the most recent NumSamples observations of X.

Innovations NumSamples by NumPaths matrix of innovations, representing 
a mean zero, discrete-time stochastic process. The 
Innovations time series follows the conditional variance 
specification defined in Spec. Rows are sequential 
observations, columns are realizations.

Sigmas NumSamples by NumPaths matrix of conditional standard 
deviations of the corresponding Innovations matrix. 
Innovations and Sigmas are the same size. Rows are 
sequential observations. Columns are realizations.

Series NumSamples by NumPaths matrix of the return series of 
interest. Series is the dependent stochastic process and 
follows the conditional mean specification of general 
ARMAX form defined in Spec. Rows are sequential 
observations. Columns are realizations.
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Examples Example 1. State as an Integer Scalar
The input State can be specified as an integer scalar, or as a time-series 
matrix. As an integer scalar, it represents the random number generator state 
J and corresponds exactly to the syntax rand('state',J) and 
randn('state',J).

This example creates a simple GARCH specification structure for simulation, 
and specifies a scalar random number generator state, J = 12345.

spec = garchset('C',0.0001,'K',0.00005,'GARCH',0.8,'ARCH',0.15);
J    = 12345;

In this situation, the following two calls to garchsim produce the same 
simulated output processes (i.e., e1 = e2, s1 = s2, and y1 = y2).

rand('state',J); randn('state',J);

[e1,s1,y1] = garchsim(spec,100,1);
[e2,s2,y2] = garchsim(spec,100,1,J);

Example 2. State as a Standardized Noise Matrix
When State is a matrix, it represents a user-specified time-series matrix of 
standardized (mean zero, unit variance), i.i.d. disturbances {z(t)} that drive 
the output time-series processes {e(t)}, {s(t)}, and {y(t)}. For example, if 
you run garchsim once, then standardize the simulated residuals and pass 
them into garchsim as the i.i.d. noise input for a second run, the  standardized 
residuals from both runs will be identical. This verifies that  the specified input 
noise matrix is indeed the "in-sample" i.i.d. noise process {z(t)} for both.

spec = garchset('C',0.0001,'K',0.00005,'GARCH',0.8,'ARCH',0.1);

[e1,s1,y1] = garchsim(spec,100,1);
z1 = e1./s1;                           % Standardize residuals
[e2,s2,y2] = garchsim(spec,100,1,z1);
z2 = e2./s2;                           % Standardize residuals

In this case, z1 = z2.

However, although the "in-sample" standardized noise processes are identical, 
in the absence of presample data the simulated output processes {e(t)}, 
{s(t)}, and {y(t)} will differ. This is because, in the absence of presample 
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data, any additional standardized noise observations necessary to minimize 
transients must be simulated from the distribution, 'Gaussian' or 'T', found 
in the specification structure.

Now specify all required presample data and repeat the experiment.

[e3,s3,y3] = garchsim(spec,100,1,[],[],[],0.02,0.06);
z3 = e3./s3;                           % Standardize residuals
[e4,s4,y4] = garchsim(spec,100,1,z3,[],[],0.02,0.06);
z4 = e4./s4;                           % Standardize residuals

In this case, e3 = e4, s3 = s4, y3 = y4 as well as z3 = z4. 

More Examples
For more examples of simulation, see “Simulating Sample Paths” on page 4-2, 
“Fitting a Model to a Simulated Return Series” on page 7-3, and “Monte Carlo 
Simulation” on page 9-6.

For more comprehensive examples that make use of this functionality, see the 
GARCH Toolbox demos “Market Risk Using GARCH, Bootstrapping and 
Filtered Historical Simulation,” and “Market Risk Using GARCH, Extreme 
Value Theory, and Copulas.” These demos are available only within MATLAB.

See Also garchfit, garchget, garchpred, garchset
rand, randn (MATLAB)

References [1] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for 
Speculative Prices and Rates of Return,” Review of Economics and Statistics, 
Vol. 69, 1987, pp 542-547.

[2] Bollerslev, T., “Generalized Autoregressive Conditional 
Heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp 307-327.

[3] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[4] Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

[5] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with 
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 
1982, pp 987-1007.
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Premia in the Term Structure: The ARCH-M Model,” Econometrica, 
Vol. 59,1987, pp 391-407.

[7] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation Between 
Expected Value and the Volatility of the Nominal Excess Return on Stocks,” 
The Journal of Finance, Vol.48, 1993, pp 1779-1801.

[8] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

[9] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New 
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10lagmatrixPurpose Create a lagged time-series matrix

Syntax XLAG = lagmatrix(X,Lags)

Description XLAG = lagmatrix(X,Lags) creates a lagged (i.e., shifted) version of a 
time-series matrix. The lagmatrix function is useful for creating a regression 
matrix of explanatory variables for fitting the conditional mean of a return 
series. 

Input 
Arguments

Output 
Arguments

 

Examples Example 1.  The following example creates a bivariate time-series matrix X 
with five observations each, then creates a lagged matrix XLAG composed of X 
and the first two lags of X. The result, XLAG, is a 5-by-6 matrix.

X Time-series of explanatory data. X can be a column vector or a 
matrix. As a column vector, X represents a univariate time series 
whose first element contains the oldest observation and whose last 
element contains the most recent observation. As a matrix, X 
represents a multivariate time series whose rows correspond to 
time indices in which the first row contains the oldest observations 
and the last row contains the most recent observations. lagmatrix 
assumes that observations across any given row occur at the same 
time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to every 
series in X, then applies the second lag to every series in X, and so 
forth. To include a time series as is, include a 0 lag. Positive lags 
correspond to delays, and shift a series back in time. Negative lags 
correspond to leads, and shift a series forward in time. 

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix 
shifts each time series in X by the first lag, then shifts each time 
series in X by the second lag, and so forth. Since XLAG represents an 
explanatory regression matrix, each column is an individual time 
series. XLAG has the same number of rows as there are observations 
in X, but its column dimension is equal to the product of the number 
of columns in X and the length of Lags. lagmatrix uses a NaN 
(Not-a-Number) to indicate an undefined observation.
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X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5]  % Create a simple bivariate
                                    % series.
X =
     1    -1
     2    -2
     3    -3
     4    -4
     5    -5

XLAG = lagmatrix(X,[0 1 2])       % Create the lagged matrix.

XLAG =
     1    -1   NaN   NaN   NaN   NaN
     2    -2     1    -1   NaN   NaN
     3    -3     2    -2     1    -1
     4    -4     3    -3     2    -2
     5    -5     4    -4     3    -3

Example 2.  See “Fitting a Regression Model to the Same Return Series” on 
page 7-5 for another example.

See Also filter, isnan, and nan (all in MATLAB)
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10lbqtestPurpose Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax [H,pValue,Qstat,CriticalValue] = lbqtest(Series,Lags,Alpha,DoF)

Description [H,pValue,Qstat,CriticalValue] = lbqtest(Series,Lags,Alpha,DoF)
performs the Ljung-Box lack-of-fit hypothesis test for model misspecification, 
which is based on the Q-statistic

 

where = sample size, = number of autocorrelation lags included in the 
statistic, and  is the squared sample autocorrelation at lag . Once you fit a 
univariate model to an observed time series, you can use the Q-statistic as a 
lack-of-fit test for a departure from randomness. Under the null hypothesis 
that the model fit is adequate, the test statistic is asymptotically chi-square 
distributed.

Input 
Arguments

Q N N 2+( )
rk

2

N k–( )
-------------------

k 1=

L

∑=

N L
rk

2 k

Series Vector of observations of a univariate time series for which 
lbqtest computes the sample Q-statistic. The last row of Series 
contains the most recent observation of the stochastic sequence. 
Typically, Series is either the sample residuals derived from 
fitting a model to an observed time series, or the standardized 
residuals obtained by dividing the sample residuals by the 
conditional standard deviations.

Lags Vector of positive integers indicating the lags of the sample 
autocorrelation function included in the Q-statistic. If specified, 
each lag must be less than the length of Series. If Lags = [] or is 
not specified, the default is 
Lags = min([20, length(Series)-1]).
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Output 
Arguments

Examples Example 1.  Create a vector of 100 Gaussian random numbers, then compute 
the Q-statistic for autocorrelation lags 20 and 25 at the 10 percent significance 
level.

randn('state',100)               % Start from a known state.
Series         = randn(100,1);   % 100 Gaussian deviates ~ N(0,1)
[H,P,Qstat,CV] = lbqtest(Series, [20 25]', 0.10);
[H,P,Qstat,CV]

ans =
         0    0.9615   10.3416   28.4120
         0    0.9857   12.1015   34.3816

Example 2.  See “Preestimation Analysis” on page 2-15 for another example.

See Also archtest, autocorr

Alpha Significance levels. Alpha can be a scalar applied to all lags, or a 
vector the same length as Lags. If Alpha = [] or is not specified, 
the default is 0.05. For all elements, , of Alpha, .

DoF Degrees of freedom. DoF can be a scalar applied to all lags, or a 
vector the same length as Lags. If specified, all elements of DoF 
must be positive integers less than the corresponding element of 
Lags. If DoF = [] or is not specified, the elements of Lags serve as 
the default degrees of freedom for the chi-square distribution.

α 0 α 1< <

H Boolean decision vector. 0 indicates acceptance of the null 
hypothesis that the model fit is adequate (no serial 
correlation at the corresponding element of Lags). 
1 indicates rejection of the null hypothesis. H is the same 
size as Lags.

pValue Vector of P-values (significance levels) at which lbqtest 
rejects the null hypothesis of no serial correlation at each 
lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

CriticalValue Vector of critical values of the chi-square distribution for 
comparison with the corresponding element of Qstat.
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References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Gourieroux, C., ARCH Models and Financial Applications, 
Springer-Verlag, 1997.
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10lratiotestPurpose Likelihood ratio hypothesis test

Syntax [H,pValue,Ratio,CriticalValue] = lratiotest(BaseLLF,NullLLF,...
                                            DoF,Alpha)

Description [H,pValue,Ratio,CriticalValue] = 
lratiotest(BaseLLF,NullLLF,DoF,Alpha) performs the likelihood ratio 
hypothesis test. lratiotest uses as input the optimized log-likelihood 
objective function (LLF) value associated with an unrestricted maximum 
likelihood parameter estimate, and the LLF values associated with restricted 
parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean and 
variance specifications to an observed univariate return series. The restricted 
models determine the null hypotheses of each test, and the number of 
restrictions they impose determines the degrees of freedom of the resulting 
chi-square distribution.

BaseLLF is usually the LLF of a larger estimated model and serves as the 
alternative hypothesis. Elements of NullLLF are then the LLFs associated with 
smaller, restricted specifications. BaseLLF should exceed the values in NullLLF, 
and the asymptotic distribution of the test statistic is chi-square distributed 
with degrees of freedom equal to the number of restrictions.

Input 
Arguments

BaseLLF Scalar value of the optimized log-likelihood objective 
function of the baseline, unrestricted estimate. lratiotest 
assumes BaseLLF is the output of the estimation function 
garchfit or the inference function garchinfer. 

NullLLF Vector of optimized log-likelihood objective function values 
of the restricted estimates. lratiotest assumes you 
obtained the NullLLF values using garchfit or 
garchinfer.
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Output 
Arguments

Examples See “Likelihood Ratio Tests” on page 8-2 and “Equality Constraints and 
Parameter Significance” on page 8-7.

See Also garchfit, garchinfer

References [1] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

DoF Degrees of freedom (i.e., the number of parameter 
restrictions) associated with each value in NullLLF. DoF 
can be a scalar applied to all values in NullLLF, or a vector 
the same length as NullLLF. All elements of DoF must be 
positive integers.

Alpha Significance levels of the hypothesis test. Alpha can be a 
scalar applied to all values in NullLLF, or a vector the same 
length as NullLLF. If Alpha = [] or is not specified, the 
default is 0.05. For all elements, , of Alpha, .α 0 α 1< <

H Vector of Boolean decisions the same size as NullLLF. 
A 0 indicates acceptance of the restricted model under the 
null hypothesis. 1 indicates rejection of the restricted, null 
hypothesis model relative to the unrestricted alternative 
associated with BaseLLF.

pValue Vector of P-values (significance levels) at which 
lratiotest rejects the null hypothesis of each restricted 
model. pValue is the same size as NullLLF.

Ratio Vector of likelihood ratio test statistics the same size as 
NullLLF. The test statistic is

CriticalValue Vector of critical values of the chi-square distribution. 
CriticalValue is the same size as NullLLF.

Ratio 2 BaseLLF NullLLF–( )=
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10parcorrPurpose Plot or return computed sample partial autocorrelation function

Syntax [PartialACF,Lags,Bounds] = parcorr(Series,nLags,R,nSTDs)

Description parcorr(Series,nLags,R,nSTDs) computes and plots the sample partial 
autocorrelation function (partial ACF) of a univariate, stochastic time series. 
parcorr computes the partial ACF by fitting successive autoregressive models 
of orders 1, 2, ... by ordinary least squares, retaining the last coefficient of each 
regression. To plot the partial ACF sequence without the confidence bounds, 
set nSTDs = 0.

[PartialACF,Lags,Bounds] = parcorr(Series,nLags,R,nSTDs) computes 
and returns the partial ACF sequence. 

Input 
Arguments

Series Vector of observations of a univariate time series for which 
parcorr returns or plots the sample partial autocorrelation 
function (partial ACF). The last element of Series contains the 
most recent observation of the stochastic sequence.

nLags Positive scalar integer indicating the number of lags of the partial 
ACF to compute. If nLags = [] or is not specified, parcorr 
computes the partial ACF sequence at lags , where 

= min([20,length(Series)-1]).
0 1 2 … T, , , ,

T
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Output 
Arguments

Examples Example 1.  Create a stationary AR(2) process from a sequence of 1000 
Gaussian deviates, and then visually assess whether the partial ACF is zero for 
lags greater than 2.

randn('state',0)                % Start from a known state.

R Nonnegative integer scalar indicating the number of lags beyond 
which parcorr assumes the theoretical partial ACF is zero. 
Assuming that Series is an AR(R) process, the estimated partial 
ACF coefficients at lags greater than R are approximately 
zero-mean, independently distributed Gaussian variates. In this 
case, the standard error of the estimated partial ACF coefficients 
of a fitted Series with  observations is approximately  
for lags greater than R. If R = [] or is not specified, the default 
is 0. The value of R must be less than nLags.

nSTDs Positive scalar indicating the number of standard deviations of 
the sample partial ACF estimation error to display, assuming that 
Series is an AR(R) process. If the Rth regression coefficient (i.e., 
the last ordinary least squares (OLS) regression coefficient of 
Series regressed on a constant and R of its lags) includes  
observations, specifying nSTDs results in confidence bounds at 

. If nSTDs = [] or is not specified, the default is 2 
(i.e., approximate 95 percent confidence interval).

N 1 N⁄

N

nSTDs N⁄( )±

PartialACF Sample partial ACF of Series. PartialACF is a vector of 
length nLags + 1 corresponding to lags 0, 1, 2, ..., nLags. The 
first element of PartialACF is unity, 
i.e., PartialACF(1) = 1 = OLS regression coefficient of 
Series regressed upon itself. parcorr includes this element as 
a reference.

Lags Vector of lags, of length nLags + 1. The elements correspond to 
the elements of PartialACF.

Bounds Two-element vector indicating the approximate upper and 
lower confidence bounds, assuming that Series is an AR(R) 
process. Note that Bounds is approximate for lags greater 
than R only.
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x = randn(1000,1);              % 1000 Gaussian deviates ~ N(0,1).
y = filter(1,[1 -0.6 0.08],x);  % Create a stationary AR(2)
                                % process.
[PartialACF,Lags,Bounds] = parcorr(y,[],2); % Compute the
                                % partial ACF with 95 percent
                                % confidence.
[Lags,PartialACF]

ans =
         0    1.0000
    1.0000    0.5570
    2.0000   -0.0931
    3.0000    0.0249
    4.0000   -0.0180
    5.0000   -0.0099
    6.0000    0.0483
    7.0000    0.0058
    8.0000    0.0354
    9.0000    0.0623
   10.0000    0.0052
   11.0000   -0.0109
   12.0000    0.0421
   13.0000   -0.0086
   14.0000   -0.0324
   15.0000    0.0482
   16.0000    0.0008
   17.0000   -0.0192
   18.0000    0.0348
   19.0000   -0.0320
   20.0000    0.0062

Bounds

Bounds =
    0.0633
   -0.0633

parcorr(y,[],2)            % Use the same example, but plot
                           % the partial ACF sequence with
                           % confidence bounds.
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Example 2.  See “Preestimation Analysis” on page 2-15 for another example.

See Also autocorr, crosscorr
filter (MATLAB)

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis: 
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.
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10price2retPurpose Convert a price series to a return series

Syntax [RetSeries,RetIntervals] = price2ret(TickSeries,TickTimes,Method)

Description [RetSeries,RetIntervals] = price2ret(TickSeries,TickTimes,Method)
computes asset returns for NUMOBS price observations of NUMASSETS assets.

Input 
Arguments

TickSeries Time series of price data. TickSeries can be a column vector 
or a matrix:

• As a vector, TickSeries represents a univariate price series. 
The length of the vector is the number of observations 
(NUMOBS). The first element contains the oldest observation, 
and the last element the most recent.

• As a matrix, TickSeries represents a NUMOBS-by-number of 
assets (NUMASSETS) matrix of asset prices. Rows correspond to 
time indices. The first row contains the oldest observations 
and the last row the most recent. price2ret assumes that 
the observations across a given row occur at the same time 
for all columns, and each column is a price series of an 
individual asset.

TickTimes A NUMOBS element vector of monotonically increasing 
observation times. Times are numeric and taken either as 
serial date numbers (day units), or as decimal numbers in 
arbitrary units (e.g., yearly). If TickTimes = [] or is not 
specified, then price2ret assumes sequential observation 
times from 1, 2, ..., NUMOBS. 

Method Character string indicating the compounding method to 
compute asset returns. If Method = 'Continuous', = [], or is 
not specified, then price2ret computes continuously 
compounded returns. If Method = 'Periodic', then 
price2ret assumes simple periodic returns. Method is case 
insensitive.



price2ret

10-78

Output 
Arguments

Examples Create a stock price process continuously compounded at 10 percent, then 
convert the price series to a 10 percent return series.

S = 100*exp(0.10 * [0:19]'); % Create the stock price series
R = price2ret(S);   % Convert the price series to a 10 percent
                    % return series
[S [R;NaN]]  % Pad the return series so vectors are of same 
             % length. price2ret computes the ith return from 
             % the ith and i+1th prices.

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element column vector, 
RetSeries is a NUMOBS-1 column vector.

• When TickSeries is a NUMOBS-by-NUMASSETS matrix, 
RetSeries is a (NUMOBS-1)-by-NUMASSETS matrix. 
price2ret quotes the th return of an asset for the period 
TickTimes(i) to TickTimes(i+1) and normalizes it by the 
time interval between successive price observations. 

Assuming that

then if Method = 'Continuous', = [], or is not specified, 
price2ret computes the continuously compounded th 
return of an asset as

 

If Method = 'Periodic', then price2ret computes the th 
simple return as

 

RetIntervals NUMOBS-1 element vector of interval times between 
observations. If TickTimes = [] or is not specified, 
price2ret assumes that all intervals are 1.

i

RetIntervals i( ) TickTimes i 1+( ) TickTimes i( )–=

i

RetSeries i( )

TickSeries i 1+( )
TickSeries i( )

----------------------------------------------------log

RetIntervals i( )
-------------------------------------------------------------------=

i

RetSeries i( )

TickSeries i 1+( )
TickSeries i( )

---------------------------------------------------- 1–

RetIntervals i( )
-------------------------------------------------------------------=
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ans =

  100.0000    0.1000
  110.5171    0.1000
  122.1403    0.1000
  134.9859    0.1000
  149.1825    0.1000
  164.8721    0.1000
  182.2119    0.1000
  201.3753    0.1000
  222.5541    0.1000
  245.9603    0.1000
  271.8282    0.1000
  300.4166    0.1000
  332.0117    0.1000
  366.9297    0.1000
  405.5200    0.1000
  448.1689    0.1000
  495.3032    0.1000
  547.3947    0.1000
  604.9647    0.1000
  668.5894       NaN

See Also ret2price
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10ret2pricePurpose Convert a return series to a price series

Syntax [TickSeries,TickTimes] = ret2price(RetSeries,StartPrice,...
                                   RetIntervals,StartTime,Method)

Description [TickSeries,TickTimes] = 
ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)
generates price series for the specified assets, given the asset starting prices 
and the return observations for each asset.

Input 
Arguments

RetSeries Time-series array of returns. RetSeries can be a column 
vector or a matrix:

• As a vector, RetSeries represents a univariate series of 
returns of a single asset. The length of the vector is the 
number of observations (NUMOBS). The first element 
contains the oldest observation, and the last element the 
most recent. 

• As a matrix, RetSeries represents a NUMOBS-by-number of 
assets (NUMASSETS) matrix of asset returns. Rows 
correspond to time indices. The first row contains the 
oldest observations and the last row the most recent. 
ret2price assumes that the observations across a given 
row occur at the same time for all columns, and each 
column is a return series of an individual asset. 

StartPrice A NUMASSETS element vector of initial prices for each asset, 
or a single scalar initial price applied to all assets. If 
StartPrice = [] or is not specified, all asset prices start 
at 1.

RetIntervals A NUMOBS element vector of time intervals between return 
observations, or a single scalar interval applied to all 
observations. If RetIntervals = [] or is not specified, 
ret2price assumes all intervals have length 1.
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Output 
Arguments

 

Examples Example 1.  Create a stock price process continuously compounded at 10 
percent. Compute 10 percent returns for reference, then convert the resulting 
return series to the original price series and compare results.

S = 100*exp(0.10 * [0:19]');  % Create the stock price series
R = price2ret(S);             % Convert the price series to a 
                              % 10 percent return series
P = ret2price(R,100);         % Convert to the original price
                              % series
[S P]                         % Compare the original and 
                              % computed price series

ans =

  100.0000  100.0000

StartTime (optional) Scalar starting time for the first observation, 
applied to the price series of all assets. The default is 0.

Method Character string indicating the compounding method used 
to compute asset returns. If Method = 'Continuous', 
= [], or is not specified, then ret2price computes 
continuously compounded returns. If Method = 'Periodic' 
then ret2price computes simple periodic returns. Method 
is case insensitive.

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element column vector, 
TickSeries is a NUMOBS+1 column vector. The first 
element contains the starting price of the asset, and the 
last element the most recent price. 

• When RetSeries is a NUMOBS-by-NUMASSETS matrix, then 
RetSeries is a (NUMOBS+1)-by-NUMASSETS matrix. The first 
row contains the starting price of the assets, and the last 
row contains the most recent prices.

TickTimes A NUMOBS+1 element vector of price observation times. The 
initial time is zero unless specified in StartTime.
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  110.5171  110.5171
  122.1403  122.1403
  134.9859  134.9859
  149.1825  149.1825
  164.8721  164.8721
  182.2119  182.2119
  201.3753  201.3753
  222.5541  222.5541
  245.9603  245.9603
  271.8282  271.8282
  300.4166  300.4166
  332.0117  332.0117
  366.9297  366.9297
  405.5200  405.5200
  448.1689  448.1689
  495.3032  495.3032
  547.3947  547.3947
  604.9647  604.9647
  668.5894  668.5894

Example 2.  This example compares the relative price performance of the 
Nasdaq and the NYSE indexes (see “Data Sets” on page 1-11). Before plotting 
the series, the example converts the prices to returns, then converts them back 
to prices specifying the same starting price, 100, for each series. In the plot, the 
blue (upper) plot shows the NASDAQ price series, the green (lower) plot shows 
the NYSE price series. 

load garchdata
nasdaq = price2ret(NASDAQ);
nyse = price2ret(NYSE);
plot(ret2price(price2ret([NASDAQ NYSE]),100))
ylabel('Prices')
legend('Nasdaq','NYSE',2)
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See Also price2ret
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Glossary

Akaike information 
criteria (AIC)

A model-order selection criterion based on parsimony. More 
complicated models are penalized for the inclusion of additional 
parameters. See also Bayesian information criteria.

AR Autoregressive. AR models include past observations of the dependent 
variable in the forecast of future observations.

ARCH Autoregressive Conditional Heteroscedasticity. A time-series 
technique in which past observations of the variance are used to 
forecast future variances. See also GARCH.

ARMA Autoregressive Moving Average. A time-series model that includes 
both AR and MA components. See also AR and MA.

autocorrelation 
function (ACF)

Correlation sequence of a random time series with itself. See also 
crosscorrelation function.

autoregressive See AR.

Bayesian information 
criteria (BIC)

A model-order selection criterion based on parsimony. More 
complicated models are penalized for the inclusion of additional 
parameters. Since BIC imposes a greater penalty for additional 
parameters than AIC, BIC always provides a model with a number of 
parameters no greater than that chosen by AIC. See also Akaike 
information criteria.

conditional Time-series technique with explicit dependence on the past sequence 
of observations.

conditional mean Time-series model for forecasting the expected value of the return 
series itself.

conditional variance Time-series model for forecasting the expected value of the variance of 
the return series.

crosscorrelation 
function (XCF)

Correlation sequence between two random time series. See also 
autocorrelation function.

equality constraint A constraint, imposed during parameter estimation, by which a 
parameter is held fixed at a user-specified value.

excess kurtosis A characteristic, relative to a standard normal probability 
distribution, whereby an area under the probability density function is 
reallocated from the center of the distribution to the tails (fat tails). 
Samples obtained from distributions with excess kurtosis have a 
higher probability of containing outliers than samples drawn from a 
normal (Gaussian) density. Time series that exhibit a fat tail 
distribution are often referred to as leptokurtic.
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explanatory variables Time series used to explain the behavior of another observed series of 
interest. Explanatory variables are typically incorporated into a 
regression framework.

fat tails See excess kurtosis.

GARCH Generalized Autoregressive Conditional Heteroscedasticity. A 
time-series technique in which past observations of the variance and 
variance forecast are used to forecast future variances. See also ARCH.

heteroscedasticity Time-varying, or time-dependent, variance.

homoscedasticity Time-independent variance. The GARCH Toolbox also refers to 
homoscedasticity as constant conditional variance.

i.i.d. Independent, identically distributed.

innovations A sequence of unanticipated shocks, or disturbances. The GARCH 
Toolbox uses innovations and residuals interchangeably. 

leptokurtic See excess kurtosis.

MA Moving average. MA models include past observations of the 
innovations noise process in the forecast of future observations of the 
dependent variable of interest.

MMSE Minimum mean square error. A technique designed to minimize the 
variance of the estimation or forecast error. See also RMSE.

moving average See MA.

objective function The function to be numerically optimized. In the GARCH Toolbox, the 
objective function is the log-likelihood function of a random process.

partial autocorrelation 
function (PACF)

Correlation sequence estimated by fitting successive order 
autoregressive models to a random time series by least squares. The 
PACF is useful for identifying the order of an autoregressive model.

path A random trial of a time-series process.

P-value The lowest level of significance at which a test statistic is significant.

realization See path.

residuals See innovations.

RMSE Root mean square error. The square root of the mean square error. See 
also MMSE.
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standardized 
innovations

The innovations divided by the corresponding conditional standard 
deviation.

time series Discrete-time sequence of observations of a random process. The type 
of time series of interest in the GARCH Toolbox is typically a series of 
returns, or relative changes of some underlying price series.

transient A response, or behavior, of a time series that is heavily dependent on 
the initial conditions chosen to begin a recursive calculation. The 
transient response is typically undesirable, and initially masks the 
true steady-state behavior of the process of interest.

unconditional Time-series technique in which explicit dependence on the past 
sequence of observations is ignored. Equivalently, the time stamp 
associated with any observation is ignored.

volatility The risk, or uncertainty, measure associated with a financial time 
series. The GARCH Toolbox associates volatility with standard 
deviation.
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Index-1

Index

A
ACF 10-10
AIC

computing 10-5
model selection 8-5

aicbic function 10-5
Akaike information criteria

computing 10-5
model selection 8-5

analysis example
using default model 2-15

AR model
converting from ARMA model 10-18

ARCH/GARCH effects
hypothesis test 10-7

archtest function 10-7
ARMA model

converting to AR model 10-18
converting to MA model 10-38

array size 1-7
arrays

time series 1-7
asymptotic behavior

for long-range forecast horizons 6-6
long-range forecasts 6-6

autocorr function 10-10
autocorrelation function 10-10
autoregressive model

converting from ARMA model 10-18

B
Bayesian information criteria

computing 10-5
model selection 8-5

BIC
computing 10-5

model selection 8-5

C
compounding

continuous and periodic 1-8
conditional mean models 2-6

regression components 7-2
conditional standard deviations

inferred from return series 10-33
of forecast errors 10-44
simulating 10-57

conditional variance models 2-6
conditional variances

constant 7-12
constraints

active lower bound example 5-28
equality 8-7
fixing model parameters 8-7
tolerance limits 5-16

conventions
technical 1-7

convergence
avoiding problems 2-15
determining status 5-31
showing little progress 2-15
suboptimal solution 2-15
tolerance options 5-14

crosscorr function 10-14
crosscorrelation function 10-14

D
data sets 1-11

Deutschmark/British Pound FX price series 
1-11
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data sets (continued)
Nasdaq Composite Index 1-12
New York Stock Exchange Composite Index 

1-12
default

GARCH model 2-12
default model

estimation and analysis example 2-15
estimation example 2-15

Deutschmark/British Pound FX price series 
1-11

distributions
supported 2-4

E
EGARCH(P,Q) conditional variance model 2-8
Engle’s hypothesis test 10-7
equality constraints

initial parameter estimates 8-12
parameter significance 8-7

estimation 5-1
advanced example 9-2
control of optimization process 5-13
convergence 5-14
convergence to suboptimal solution 2-15
count of coefficients 8-5, 10-21
incorporating a regression model 7-3
initial parameter estimates 5-4
maximum likelihood 5-2
number of function evaluations 5-13
number of iterations 5-13
of GARCH process 10-24
optimization results 5-15
parameter bounds 5-9
plotting results 10-41
premature termination 2-15

presample observations 5-11
summary information 10-27
termination criteria 5-13
tolerance options 5-14

estimation example
estimating model parameters 2-23
postestimation analysis 2-26
preestimation analysis 2-15
using default model 2-15

F
fat tails 2-2
financial time series

characteristics 2-2
modeling 2-2

fixing model constraints 8-7
forecast errors

conditional standard deviations 10-44
forecast results

compare with simulation results 9-8
forecasted explanatory data 7-10
forecasting 6-1

advanced example 9-4
asymptotic behavior for long-range 6-6
basic example 6-8
conditional mean of returns 6-3
conditional standard deviations of innovations 

6-2
minimum mean square error 6-2
multiperiod volatility example 6-11
multiple realizations example 6-14
plotting results 10-41
presample data 6-5
RMSE of mean forecast 6-4
using a regression model 7-10
volatility of returns 6-3
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function evaluation count
maximum 5-13

functions
example showing relationships 9-1
primary engines 2-13

G
GARCH

brief description 1-3
limitations 1-4
uses for 1-3

GARCH process
forecasting 10-44
inferring innovations 10-33
parameter estimation 10-24

count of coefficients 10-21
displaying results 10-22

simulation 10-57
GARCH specification structure

contents 3-5
creating and modifying parameters 3-8
definition of fields 10-52
retrieving parameters 10-32

GARCH Toolbox
conventions and clarifications

compounding 1-8
primary functions 2-13

GARCH(P,Q) conditional variance model 2-7
garchar function 10-18
garchcount function 10-21
garchdisp function 10-22
garchfit function 10-24
garchget function 10-32
garchinfer function 10-33
garchma function 10-38
garchplot function 10-41

garchpred function 10-44
garchset function 10-51
garchsim function 10-57
GJR(P,Q) conditional variance model 2-7

H
hypothesis tests

likelihood ratio 10-71
Ljung-Box lack-of-fit 10-68

I
inference

conditional standard deviations 10-33
GARCH innovations 10-33
transient effects example 5-23
using a regression model 7-9

initial parameter estimates 5-4
conditional mean models with regression 5-6
conditional mean models without regression 

5-6
conditional variance models 5-7
equality constraints 8-12

innovations
distribution 2-4
forecasting conditional standard deviations 

6-2
inferred from return series 10-33
serial dependence 2-4
simulating 10-57

iteration count
maximum 5-13

L
lack-of-fit hypothesis test 10-68
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lagged time-series matrix 10-66
lagmatrix function 10-66
lbqtest function 10-68
length

vector 1-7
leverage effects 2-2
likelihood ratio hypothesis test 10-71
likelihood ratio tests

model selection 8-2
Ljung-Box lack-of-fit hypothesis test 10-68
log-likelihood functions 5-2

optimized value parameters 10-24
long-range forecasting

asymptotic behavior 6-6
lratiotest function 10-71

M
MA model

converting from ARMA model 10-38
maximum likelihood

estimation 5-2
minimum mean square error

forecasting 6-2
MMSE

forecasting 6-2
model parameters

complete specification 8-12
empty fix fields 8-13
equality constraints 8-7
estimating 2-23
fixing 8-7
parsimony 8-15

model selection and analysis 8-1
AIC and BIC 8-5
correlation in return series 2-18
correlation in squared returns 2-20

Engle’s ARCH test 2-23
likelihood ratio tests 8-2
Ljung-Box-Pierce Q-test 2-22

modeling
financial time series 2-2

models
complete specification 8-12
conditional mean and variance 2-6
GARCH default 2-12

Monte Carlo simulation 7-14
advanced example 9-6
compare with forecast results 9-8

moving average model
converting from ARMA model 10-38

N
Nasdaq Composite Index 1-12
New York Stock Exchange Composite Index 1-12
nonstationary time series 1-9
NYSE Composite Index 1-12

O
ordinary least squares regression 7-12

P
PACF 10-73
parameter estimates

bounds 5-9
displaying results 10-22
equality constraints 8-12
initial 5-4

automatically generated 5-5
user-specified 5-4
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parameter estimation
plotting results 10-41
univariate GARCH process 10-24

parcorr function 10-73
parsimonious parameterization 8-15
partial autocorrelation function 10-73
plotting

autocorrelation function 10-10
crosscorrelation function 10-14
forecasted results 10-41
parameter estimation results 10-41
partial autocorrelation function 10-73
simulation results 10-41

precision 1-8
prerequisites 1-5
presample data

estimation
automatically generated 5-11
deriving from actual data 5-27
example 5-19
user-specified 5-11

forecasting 6-5
simulation

automatically generated 4-6
user-specified 4-11

price series
converting from return series 10-80
converting to return series 10-77

price2ret function 10-77

R
regression

in Monte Carlo framework 7-14
regression components

conditional mean models 7-2
estimation 7-3

forecasting 7-10
inference 7-9
simulation 7-9

response tolerance
for simulated data 4-7

ret2price function 10-80
return series

converting from price series 10-77
converting to price series 10-80
forecasting conditional mean 6-3
forecasting RMSE of mean forecast 6-4
forecasting volatility 6-3
simulating 10-57

S
shifted time-series matrix 10-66
simulation 4-1

compare with forecast results 9-8
plotting results 10-41
presample data 4-6
response tolerance 4-7
sample paths 4-2
storage considerations 4-9
univariate GARCH processes 10-57
using a regression model 7-9
using ordinary least squares regression 7-12

size
array and vector 1-7

specification structure
contents 3-5
creating and modifying parameters 3-8
definition of fields 10-52
fixing model parameters 8-7
retrieving parameters 10-32

stationary time series 1-9
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T
termination criteria

estimation 5-13
time series

characteristics of financial 2-2
correlation of observations 2-4
modeling financial 2-2
stationary and nonstationary 1-9
stationary, nonstationary 1-9

time-series matrix 1-7
lagged or shifted 10-66

tolerance options 5-14
constraint violation 5-16
effect on convergence 5-14
effect on optimization results 5-15

transients
automatic minimization 4-6
in presample simulation data 4-6
inference example 5-23
minimization techniques 4-10
simulation process 4-6

V
vector length 1-7
vector size 1-7
volatility

forecasting 6-3
forecasting example 6-11

volatility clustering 2-2

X
XCF 10-14
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