
For Use with MATLAB®

User’s Guide
Version 2

GARCH
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

GARCH Toolbox User’s Guide
© COPYRIGHT 1999 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

July 1999 First printing New for Version 1.0 (Release 11)
November 2000 Online only Revised for Version 1.0.1 (Release 12)
July 2002 Online only Revised for Version 1.0.2 (Release 13)
November 2002 Second printing Revised for Version 2.0 (Release 13+)
June 2004 Online only Minor revision for Version 2.0.1 (Release 14)
August 2004 Third printing Revised for Version 2.0.1
September 2005 Online only Revised for Version 2.1 (Release 14SP3)

i

Contents

1
Getting Started

What Is the GARCH Toolbox? . 1-2

GARCH Overview . 1-3
What Is GARCH? . 1-3
Why Use GARCH? . 1-3
GARCH Limitations . 1-4

Software Requirements and Compatibility 1-5

Expected Background . 1-6

Technical Conventions . 1-7

Data Sets . 1-11
DEM2GBP . 1-11
NASDAQ . 1-12
NYSE . 1-12

2
GARCH Overview

Modeling of Financial Time Series . 2-2
Characteristics of Financial Time Series 2-2
Correlation and Forecasting of Financial Time Series 2-4
Serial Dependence in Innovations . 2-4

Conditional Mean and Variance Models 2-6
Conditional Mean Model . 2-6
Conditional Variance Models . 2-6
Comments on the Models . 2-9

ii Contents

The Default Model . 2-12

Primary Toolbox Functions . 2-13

Analysis and Estimation Example Using the Default
Model . 2-15

Preestimation Analysis . 2-15
Parameter Estimation . 2-23
Postestimation Analysis . 2-26

3
GARCH Specification Structure

Introduction . 3-2

Equation Variables and Parameter Names 3-4
Conditional Mean Model . 3-4
Conditional Variance Models . 3-4

Examples of Specification Structures 3-5

Reading and Writing Specification Structures 3-8
Creating and Modifying a Specification Structure 3-8
Retrieving Specification Structure Values 3-11

4
Simulation

Simulating Sample Paths . 4-2
Introduction . 4-2
Simulating a Single Path . 4-3
Simulating Multiple Paths . 4-5

iii

Presample Data . 4-6
Automatically Generated Presample Data 4-6
User-Specified Presample Data . 4-11

5
Estimation

Maximum Likelihood Estimation . 5-2

Initial Parameter Estimates . 5-4
User-Specified Initial Estimates . 5-4
Automatically Generated Initial Estimates 5-5
Parameter Bounds . 5-9

Presample Observations . 5-11
User-Specified Presample Observations 5-11
Automatically Generated Presample Observations 5-11

Termination Criteria and Optimization Results 5-13
MaxIter and MaxFunEvals . 5-13
TolCon, TolFun, and TolX . 5-14
Convergence . 5-14
Optimization Results . 5-15
Constraint Violation Tolerance . 5-16

Examples . 5-19
Specifying Presample Data . 5-19
Presample Data and Transient Effects 5-23
Alternative Technique for Estimating ARMA(R,M)
Parameters . 5-27
Active Lower Bound Constraint . 5-28
Determining Convergence Status . 5-31

iv Contents

6
Forecasting

Minimum Mean Square Error Forecasting 6-2
Conditional Standard Deviations of Future Innovations 6-2
Conditional Mean Forecasts of the Return Series 6-3
MMSE Volatility Forecasts of Returns . 6-3
RMSE Associated with Conditional Mean Forecasts 6-4

Presample Observations . 6-5

Asymptotic Behavior for Long-Range Forecast Horizons . 6-6

Examples . 6-8
Computing a Forecast . 6-8
Volatility Forecasts over Multiple Periods 6-11
Computing a Forecast with Multiple Realizations 6-14

7

Regression Components in Conditional
Mean Models

Introduction . 7-2

Incorporating a Regression Model in an Estimation 7-3
Fitting a Model to a Simulated Return Series 7-3
Fitting a Regression Model to the Same Return Series 7-5

Simulation and Inference Using a Regression Component 7-9

Forecasting Using a Regression Component 7-10
Forecasted Explanatory Data . 7-10
Generating Forecasted Explanatory Data 7-11

Ordinary Least Squares Regression 7-12

Regression in a Monte Carlo Framework 7-14

v

8
Model Selection and Analysis

Likelihood Ratio Tests . 8-2

Akaike and Bayesian Information Criteria 8-5

Equality Constraints and Parameter Significance 8-7
The Specification Structure Fix Fields . 8-7
The GARCH(2,1) Model as an Example 8-8

Equality Constraints and Initial Parameter Estimates . . . 8-12
Complete Model Specification . 8-12
Empty Fix Fields . 8-13
Limiting Use of Equality Constraints . 8-14

Simplicity and Parsimony . 8-15

9
Advanced Example

Estimating the Model . 9-2

Forecasting . 9-4

Monte Carlo Simulation . 9-6

Comparing Forecasts with Simulation Results 9-8

10
Function Reference

Functions — Categorical List . 10-2
GARCH Modeling . 10-2

vi Contents

GARCH Innovations Inference . 10-2
Statistics and Tests . 10-2
GARCH Specification Structure Interface Functions 10-3
Helpers and Utilities . 10-3
Graphics . 10-3

Functions — Alphabetical List . 10-4

A
Bibliography

Glossary

Index

1

Getting Started

What Is the GARCH Toolbox? (p. 1-2) Introduces the GARCH Toolbox, and describes its
intended use and its capabilities.

GARCH Overview (p. 1-3) Introduces GARCH and the characteristics of GARCH
models that are commonly associated with financial time
series.

Software Requirements and
Compatibility (p. 1-5)

Lists other MathWorks toolboxes and version
compatibility required by the GARCH Toolbox.

Expected Background (p. 1-6) Describes the intended audience for this product.

Technical Conventions (p. 1-7) Describes the use of common mathematical terms in this
guide. See the “Glossary” for definitions of
GARCH-specific terms.

Data Sets (p. 1-11) Introduces the data sets that are used in examples
throughout this manual.

1 Getting Started

1-2

What Is the GARCH Toolbox?
The GARCH Toolbox, combined with MATLAB® and the Optimization and
Statistics Toolboxes, provides an integrated computing environment for
modeling the volatility of univariate economic time series. The GARCH
Toolbox uses a general ARMAX conditional mean model combined with a
conditional variance model of GARCH, GJR, or EGARCH form to perform
simulation, forecasting, and parameter estimation of univariate time series in
the presence of conditional heteroscedasticity. Supporting functions perform
tasks such as pre- and postestimation diagnostic testing, hypothesis testing of
residuals, model order selection, and time-series transformations. Graphics
capabilities let you plot correlation functions and visually compare matched
innovations, volatility, and return series.

More specifically, you can

• Perform Monte Carlo simulation of univariate returns, innovations, and
conditional volatilities

• Specify general ARMAX conditional mean models combined with conditional
variance models of GARCH, GJR, or EGARCH form for univariate asset
returns

• Estimate parameters of general ARMAX conditional mean models combined
with conditional variance models of GARCH, GJR, or EGARCH form

• Generate minimum mean square error forecasts of the conditional mean and
conditional variance of univariate return series

• Perform pre- and postestimation diagnostic and hypothesis testing, such as
Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and
AIC/BIC model order selection

• Perform graphical correlation analysis, including autocorrelation, cross
correlation, and partial autocorrelation

• Convert price/return series to return/price series, and transform finite-order
ARMA models to infinite-order AR and MA models

GARCH Overview

1-3

GARCH Overview
This section discusses

• “What Is GARCH?” on page 1-3

• “Why Use GARCH?” on page 1-3

• “GARCH Limitations” on page 1-4

What Is GARCH?
GARCH stands for Generalized Autoregressive Conditional
Heteroscedasticity. Loosely speaking, you can think of heteroscedasticity as
time-varying variance (i.e., volatility). Conditional implies a dependence on the
observations of the immediate past, and autoregressive describes a feedback
mechanism that incorporates past observations into the present. GARCH then
is a mechanism that includes past variances in the explanation of future
variances. More specifically, GARCH is a time-series technique that allows
users to model the serial dependence of volatility.

In this manual, whenever a time series is said to have GARCH effects, the
series is heteroscedastic, i.e., its variances vary with time. If its variances
remain constant with time, the series is homoscedastic.

Why Use GARCH?
GARCH modeling builds on advances in the understanding and modeling of
volatility in the last decade. It takes into account excess kurtosis (i.e., fat tail
behavior) and volatility clustering, two important characteristics of financial
time series. It provides accurate forecasts of variances and covariances of asset
returns through its ability to model time-varying conditional variances. As a
consequence, you can apply GARCH models to such diverse fields as risk
management, portfolio management and asset allocation, option pricing,
foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for
individual stocks, but for stock portfolios and indices, and equity futures
markets as well [5]. These effects are important in such areas as value-at-risk
(VaR) and other risk management applications that concern the efficient
allocation of capital. You can use GARCH models to examine the relationship
between long- and short-term interest rates. As the uncertainty for rates over
various horizons changes through time, you can also apply GARCH models in

1 Getting Started

1-4

the analysis of time-varying risk premiums [5]. Foreign exchange markets,
which couple highly persistent periods of volatility and tranquility with
significant fat-tail behavior [5], are particularly well-suited for GARCH
modeling.

Note Bollerslev [4] developed GARCH as a generalization of Engle’s [12]
original ARCH volatility modeling technique. Bollerslev designed GARCH to
offer a more parsimonious model (i.e., using fewer parameters) that lessens
the computational burden.

GARCH Limitations
Although GARCH models are useful across a wide range of applications, they
do have limitations:

• GARCH models are only part of a solution. Although GARCH models are
usually applied to return series, financial decisions are rarely based solely on
expected returns and volatilities.

• GARCH models are parametric specifications that operate best under
relatively stable market conditions [15]. Although GARCH is explicitly
designed to model time-varying conditional variances, GARCH models often
fail to capture highly irregular phenomena, including wild market
fluctuations (e.g., crashes and subsequent rebounds), and other highly
unanticipated events that can lead to significant structural change.

• GARCH models often fail to fully capture the fat tails observed in asset
return series. Heteroscedasticity explains some of the fat-tail behavior, but
typically not all of it. To compensate for this limitation, fat-tailed
distributions such as Student’s t have been applied to GARCH modeling.

Software Requirements and Compatibility

1-5

Software Requirements and Compatibility
The GARCH Toolbox requires the Statistics and Optimization Toolboxes.
However, you need not read those manuals before reading this one.

The GARCH Toolbox Version 2.1 is compatible with Release 14 with
Service Pack 3, including MATLAB 7.1, Statistics Toolbox 5.1, and
Optimization Toolbox 3.0.3.

1 Getting Started

1-6

Expected Background
This guide is a practical introduction to the GARCH Toolbox. In general, it
assumes you are familiar with the basic concepts of General Autoregressive
Conditional Heteroscedasticity (GARCH) modeling.

In designing the GARCH Toolbox and this manual, we assume your title is
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Economist

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability theory, statistics, and algebra

• Understand linear or matrix algebra, calculus, and differential equations

• Previously done traditional programming (C, Fortran, etc.)

• Responsible for instruments or analyses involving large sums of money

• Perhaps new to MATLAB

Technical Conventions

1-7

Technical Conventions
This user’s guide uses the following definitions and descriptions. See the
“Glossary” for general term definitions.

Array and Vector Size
The size of an array describes the dimensions of the array. If a matrix has m
rows and n columns, its size is m-by-n. If two arrays are the same size, their
dimensions are the same.

If two vectors are of the same size, then they not only have the same length, but
they also have the same orientation.

Vector Length
The length of a vector indicates only the number of elements in the vector. If
the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1 (column)
vector. Two vectors of length n, one a row vector and the other a column vector,
do not have the same size.

Time-Series Arrays
The concept of a time series, an ordered set of observations stored in a
MATLAB array, is used throughout this User's Guide. The rows of a
time-series array correspond to time-tagged indices, or observations, and the
columns correspond to sample paths, independent realizations, or individual
time series. In any given column, the first row contains the oldest observation
and the last row contains the most recent observation. In this representation,
a time-series array is said to be column-oriented.

Note Although some GARCH Toolbox functions can process univariate
time-series arrays formatted as either row or column vectors, many functions
now strictly enforce the column-oriented representation of a time series.
Because of this and to avoid ambiguity, you should format single realizations
of univariate time series as column vectors. Representing a time series in
column-oriented format will avoid misinterpretation of the arguments, and
will also make it easier for you to display data in the command window.

1 Getting Started

1-8

Conditional vs. Unconditional
The term conditional implies explicit dependence on a past sequence of
observations. The term unconditional is more concerned with long-term
behavior of a time series and assumes no explicit knowledge of the past.

Precision
The GARCH Toolbox performs all its calculations in double precision. Select
File -> Preferences -> Command Window -> Text display to set the numeric
format for your displays. The default is short.

Prices, Returns, and Compounding
The GARCH Toolbox assumes that time-series vectors and matrices are
time-tagged series of observations. If you have a price series, the toolbox lets
you convert it to a return series using either continuous compounding or simple
periodic compounding.

If you denote successive price observations made at times and as and
, respectively, continuous compounding transforms a price series

into a return series as

(1-1)

Simple periodic compounding defines the transformation as

(1-2)

Continuous compounding is the default compounding method of the GARCH
Toolbox, and is the preferred method for most of continuous-time finance. Since
GARCH modeling is typically based on relatively high frequency data
(i.e., daily or weekly observations), the difference between the two methods is
usually small. However, there are some toolbox functions whose results are
approximations for simple periodic compounding, but exact for continuous
compounding. If you adopt the continuous compounding default convention
when moving between prices and returns, all toolbox functions produce exact
results.

t t 1+ Pt
Pt 1+ Pt{ }

yt{ }

yt
Pt 1+

Pt
-------------log Pt 1+log Ptlog–= =

yt
Pt 1+ Pt–

Pt

Pt 1+

Pt
------------- 1–= =

Technical Conventions

1-9

Stationary and Nonstationary Time Series
The GARCH Toolbox assumes that return series are stationary processes. The
price-to-return transformation generally guarantees a stable data set for
GARCH modeling.

This figure illustrates an equity price series. In this case, it shows daily closing
values of the Nasdaq™ Composite Index (see “Data Sets” on page 1-11). Notice
that there appears to be no long-run average level about which the series
evolves. This is evidence of a nonstationary time series.

The following figure, however, illustrates the continuously compounded
returns associated with the same price series. In contrast, the returns appear
to be quite stable over time, and the transformation from prices to returns has
produced a stationary time series.

1 507 1014 1518 2025 2529 3028

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

P
ric

es

NASDAQ Daily Closing Values

1 Getting Started

1-10

The GARCH Toolbox assumes that return series are stationary processes. This
may seem limiting, but the price-to-return transformation is common and
generally guarantees a stable data set for GARCH modeling.

1 507 1014 1518 2025 2529 3027

−0.1

−0.05

0

0.05

0.1

0.15

R
et

ur
ns

NASDAQ Daily Returns

Data Sets

1-11

Data Sets
The GARCH Toolbox documentation uses the following financial time series.
You can find them in the MAT-file garchdata.mat.

• “DEM2GBP” on page 1-11

• “NASDAQ” on page 1-12

• “NYSE” on page 1-12

DEM2GBP
The DEM2GBP series contains daily observations of the Deutschmark/British
Pound foreign exchange rate, i.e., an FX price series. The sample period is from
January 2, 1984, to December 31,1991, for a total of 1975 daily observations of
FX exchange rates.

The DEM2GBP price series is derived from the corresponding daily percentage
nominal returns for the Deutschemark/British Pound exchange rate computed
as

where is the bilateral Deutschmark/British Pound FX rate constructed from
the corresponding U.S. dollar rates. The original nominal returns, expressed in
percent, were originally published in Bollerslev and Ghysels [7].

You can also obtain the percentage returns data from the Journal of Business
and Economic Statistics (JBES) FTP site,
ftp://www.amstat.org/JBES_View/96-2-APR/bollerslev_ghysels/bollers
lev.sec41.dat.

The sample period discussed in the Bollerslev and Ghysels article is from
January 3, 1984, to December 31, 1991, for a total of 1974 observations of daily
percentage nominal returns. These returns, combined with an approximate
closing exchange rate from January 2, 1984, obtained from OANDA.com, The
Currency Site™ (http://www.oanda.com), allow an approximate
reconstruction of the corresponding FX closing price series.

This particular FX price series is included in the GARCH Toolbox
documentation because it has been promoted as an informal benchmark for
GARCH time-series software validation. See McCullough & Renfro [21], and
Brooks, Burke, & Persand [9] for details. Note that the estimation results

yt 100ln Pt 1+ Pt⁄() 100 ln Pt 1+() ln Pt()–[]= =

Pt

1 Getting Started

1-12

published in these references are based on the original percentage returns. The
GARCH Toolbox presents the data as a price series merely to maintain
consistency with the other two datasets highlighted throughout this manual.

NASDAQ
The NASDAQ series contains daily closing values of the Nasdaq™ Composite
Index. The sample period is from January 2, 1990, to December 31, 2001, for a
total of 3028 daily equity index observations.

The Nasdaq Composite closing index values were downloaded directly from the
Market Data section of the Nasdaq™ web page.

NYSE
The NYSE series contains daily closing values of the New York Stock
Exchange™ Composite Index. The sample period is from January 2, 1990, to
December 31, 2001, for a total of 3028 daily equity index observations of the
NYSE Composite Index.

The NYSE Composite Index daily closing values were downloaded directly
from the Market Information section of the NYSE™ web page.

2

GARCH Overview

Modeling of Financial Time Series
(p. 2-2)

Discusses some general concepts related to the modeling of
financial time series.

Conditional Mean and Variance
Models (p. 2-6)

Introduces the models you can use to describe conditional
mean and variance to the GARCH Toolbox.

The Default Model (p. 2-12) Describes the GARCH Toolbox default conditional mean and
variance models.

Primary Toolbox Functions (p. 2-13) Introduces the core functions you use to perform estimation,
simulation, and forecasting.

Analysis and Estimation Example
Using the Default Model (p. 2-15)

Uses the default model to examine the Deutschmark/British
Pound foreign exchange rate series.

2 GARCH Overview

2-2

Modeling of Financial Time Series
This section discusses

• “Characteristics of Financial Time Series” on page 2-2

• “Correlation and Forecasting of Financial Time Series” on page 2-4

• “Serial Dependence in Innovations” on page 2-4

Characteristics of Financial Time Series
GARCH models are designed to capture certain characteristics that are
commonly associated with financial time series:

• Fat tails

• Volatility clustering

• Leverage effects

Probability distributions for asset returns often exhibit fatter tails than the
standard normal, or Gaussian, distribution. The fat tail phenomenon is known
as excess kurtosis. Time series that exhibit a fat tail distribution are often
referred to as leptokurtic. The red (dashed) line in the following figure
illustrates excess kurtosis. The blue (solid) line shows a Gaussian distribution.

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Modeling of Financial Time Series

2-3

In addition, financial time series usually exhibit a characteristic known as
volatility clustering, in which large changes tend to follow large changes, and
small changes tend to follow small changes. In either case, the changes from
one period to the next are typically of unpredictable sign. Large disturbances,
positive or negative, become part of the information set used to construct the
variance forecast of the next period's disturbance. In this manner, large shocks
of either sign are allowed to persist, and can influence the volatility forecasts
for several periods.

Volatility clustering, or persistence, suggests a time-series model in which
successive disturbances, although uncorrelated, are nonetheless serially
dependent. The following figure illustrates this characteristic. It shows the
daily returns of the New York Stock Exchange™ Composite Index (see “Data
Sets” on page 1-11).

Volatility clustering (a type of heteroscedasticity) accounts for some but not all
of the fat tail effect (or excess kurtosis) typically observed in financial data. A
part of the fat tail effect can also result from the presence of non-Gaussian
asset return distributions that just happen to have fat tails, such as
Student’s t.

Finally, certain classes of asymmetric GARCH models are also capable of
capturing the so-called leverage effect, in which asset returns are often

1 507 1014 1518 2025 2529 3027
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

R
et

ur
n

NYSE Daily Returns

2 GARCH Overview

2-4

observed to be negatively correlated with changes is volatility. That is, for
certain asset classes, most notably equities but excluding foreign exchange,
volatility tends to rise in response to lower than expected returns and to fall in
response to higher than expected returns. Such an effect suggests GARCH
models that include an asymmetric response to positive and negative surprises.

Correlation and Forecasting of Financial Time Series
If you treat a financial time series as a sequence of random observations, this
random sequence, or stochastic process, may exhibit some degree of correlation
from one observation to the next. You can use this correlation structure to
predict future values of the process based on the past history of observations.
Exploiting the correlation structure, if any, allows you to decompose the time
series into a deterministic component (i.e., the forecast), and a random
component (i.e., the error, or uncertainty, associated with the forecast).

The following equation uses these components to represent a univariate model
of an observed time series .

In this equation,

• represents the forecast, or deterministic component, of the current
return as a function of any information known at time , including past
innovations , past observations , and any
other relevant explanatory time-series data, .

• is the random component. It represents the innovation in the mean of .
Note that you can also interpret the random disturbance, or shock, , as the
single-period-ahead forecast error.

Serial Dependence in Innovations
A common assumption when modeling financial time series is that the forecast
errors (i.e., the innovations) are zero-mean random disturbances uncorrelated
from one period to the next.

yt

yt f t 1– X,() εt+=

f t 1– X,()
t 1–

εt 1– εt 2– …, ,{ } yt 1– yt 2– …, ,{ }
X

εt yt
εt

E εt{ } 0=

E εtεT{ } 0= t T≠

Modeling of Financial Time Series

2-5

Although successive innovations are uncorrelated, they are not independent.
In fact, an explicit generating mechanism for a GARCH innovations process,

, is

(2-1)

where is the conditional standard deviation derived from one of the
conditional variance equations shown in “Conditional Variance Models” on
page 2-6.

 is a standardized, independent, identically distributed (i.i.d.) random draw
from some specified probability distribution. The GARCH Toolbox provides two
distributions for modeling GARCH processes: Gaussian and Student’s t.
Eq. (2-1) illustrates that a GARCH innovations process simply rescales
an i.i.d process such that the conditional standard deviation incorporates
the serial dependence of the conditional variance equation. Equivalently,
Eq. (2-1) also states that a standardized GARCH disturbance, , is itself
an i.i.d. random variable .

Notice that GARCH models are consistent with various forms of efficient
market theory, which state that asset returns observed in the past cannot
improve the forecasts of asset returns in the future. Since GARCH innovations

 are serially uncorrelated, GARCH modeling does not violate efficient
market theory.

εt{ }

εt σtzt=

σt

zt

εt{ }
zt{ }

εt σt⁄
zt

εt{ }

2 GARCH Overview

2-6

Conditional Mean and Variance Models
This section describes the conditional mean and variance models that the
GARCH Toolbox supports and offers some comments to help clarify their
descriptions.

• “Conditional Mean Model” on page 2-6

• “Conditional Variance Models” on page 2-6

• “Comments on the Models” on page 2-9

Conditional Mean Model
This general ARMAX(R,M,Nx) model for the conditional mean applies to all
variance models.

(2-2)

with autoregressive coefficients , moving average coefficients ,
innovations , and returns . is an explanatory regression matrix in
which each column is a time series and denotes the th row and th
column.

The eigenvalues associated with the characteristic AR polynomial

must lie inside the unit circle to ensure stationarity. Similarly, the eigenvalues
associated with the characteristic MA polynomial

must lie inside the unit circle to ensure invertibility.

Conditional Variance Models
The conditional variance of the innovations, , is by definition

(2-3)

yt C φiyt i–
i 1=

R

∑ εt θjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=

φi{ } θj{ }
εt{ } yt{ } X

X t k,() t k

λi{ }

λR φ1λR 1–
– φ2λR 2–

– …– φR–

λM θ1λM 1– θ2λM 2– … θM+ + + +

σt
2

Vart 1– yt() Et 1– εt
2() σt

2
= =

Conditional Mean and Variance Models

2-7

The key insight of GARCH lies in the distinction between conditional and
unconditional variances of the innovations process . The term conditional
implies explicit dependence on a past sequence of observations. The term
unconditional is more concerned with long-term behavior of a time series and
assumes no explicit knowledge of the past.

The various GARCH models characterize the conditional distribution of by
imposing alternative parameterizations to capture serial dependence on the
conditional variance of the innovations. “Comments on the Models” on page 2-9
further defines the conditional variance models.

GARCH(P,Q) Conditional Variance
The general GARCH(P,Q) model for the conditional variance of innovations is

 (2-4)

with constraints

Note that the basic GARCH(P,Q) model is a symmetric variance process, in
that the sign of the disturbance is ignored.

GJR(P,Q) Conditional Variance
The general GJR(P,Q) model for the conditional variance of the innovations
with leverage terms is

(2-5)

εt{ }

εt

σt
2 κ Giσt i–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑+ +=

Gi
i 1=

P

∑ Aj
j 1=

Q

∑+ 1<

κ 0>

Gi 0≥ i 1 2 … P, , ,=

Aj 0≥ j 1 2 … Q, , ,=

σt
2 κ Giσt 1–

2

i 1=

P

∑ Ajεt j–
2

j 1=

Q

∑ LjSt j–
– εt j–

2

j 1–

Q

∑+ + +=

2 GARCH Overview

2-8

where

and

EGARCH(P,Q) Conditional Variance
The general EGARCH(P,Q) model for the conditional variance of the
innovations with leverage terms and an explicit probability distribution
assumption is

(2-6)

where

with degrees of freedom .

St j–
– 1 εt j– 0<

0 otherwise⎩
⎨
⎧

=

Gi

i 1=

P

∑ Aj

j 1=

Q

∑
1
2
--- Lj

j 1=

Q

∑+ + 1<

κ 0>

Gi 0≥ i 1 2 … P, , ,=

Aj 0≥ j 1 2 … Q, , ,=

Aj Lj+ 0≥ j 1 2 … Q, , ,=

log σt
2 κ Gilogσt i–

2

i 1=

P

∑ Aj
εt j–

σt j–

-------------- E
εt j–

σt j–

⎩ ⎭
⎨ ⎬
⎧ ⎫

–

j 1=

Q

∑ Lj
εt j–

σt j–

⎝ ⎠
⎜ ⎟
⎛ ⎞

j 1=

Q

∑+ + +=

E zt j–{ } E
εt j–

σt j–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2 π⁄ Gaussian

ν 2–
π

Γ ν 1–
2

------------⎝ ⎠
⎛ ⎞

Γ ν
2
---⎝ ⎠
⎛ ⎞

----------------------⋅ Student’s t

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

= =

ν 2>

Conditional Mean and Variance Models

2-9

EGARCH(P,Q) models are treated as ARMA(P,Q) models for . Thus, the
stationarity constraint for EGARCH(P,Q) models is included by ensuring that
the eigenvalues of the characteristic polynomial

are inside the unit circle.

Note that EGARCH models are fundamentally different from GARCH and GJR
models in that the standardized innovation, , serves as the forcing variable
for both the conditional variance and the error. GARCH and GJR models allow
for volatility clustering (i.e., persistence) by a combination of the and
terms, whereas persistence in EGARCH models is entirely captured by the
terms.

Comments on the Models
The econometrics literature is often vague and lacks consensus regarding the
exact definition of any particular class of GARCH model. As a result, there are
often discrepancies among software vendors, researchers, and references as to
the exact functional form, or parameter constraints, or both, of almost all
GARCH models. To help you reconcile some of these discrepancies, a few
comments are useful:

• Although the functional form of a GARCH(P,Q) model (Eq. (2-4)) is quite
standard, alternative positivity constraints exist. However, these
alternatives involve additional nonlinear inequalities that are difficult to
impose in practice, and do not affect the GARCH(1,1) model, which is by far
the most common. In contrast, the standard linear positivity constraints
imposed by the GARCH Toolbox are commonly used, and are
straightforward to implement.

• Many references and software vendors refer to the GJR(P,Q) model
(Eq. (2-5)) as a TGARCH, or Threshold GARCH, model. However, others
make a very clear distinction between GJR(P,Q) and TGARCH(P,Q) models:
a GJR(P,Q) model is a recursive equation for the conditional variance,
whereas a TGARCH(P,Q) model is the identical recursive equation for the
conditional standard deviation (see, for example, Hamilton [18] page 669,
Bollerslev, et. al. [6] page 2970). Furthermore, additional discrepancies exist
regarding whether or not to allow both negative and positive innovations to

logσt
2

λP G1λP 1–
– G2λP 2–

– …– GP–

zt

Gi Aj
Gi

2 GARCH Overview

2-10

affect the conditional variance process. The GJR(P,Q) model included in the
GARCH Toolbox is relatively standard.

• The manner in which the GARCH Toolbox parameterizes GARCH(P,Q) and
GJR(P,Q) models, Eq. (2-4) and Eq. (2-5), including constraints, allows you
to interpret a GJR(P,Q) model as a straightforward extension of a
GARCH(P,Q) model. Equivalently, you can interpret a GARCH(P,Q) model
as a restricted GJR(P,Q) model with zero leverage terms. This latter
interpretation is convenient for, among other things, estimation and
hypothesis testing via likelihood ratios.

• For GARCH(P,Q) and GJR(P,Q) models, the lag lengths and , as well as
the magnitudes of the coefficients and , determine the extent to which
disturbances persist. These values then determine the minimum amount of
presample data needed to initiate the simulation and estimation processes.
Note that persistence in EGARCH models is entirely captured by the
terms.

• Although the functional form of an EGARCH(P,Q) model (Eq. (2-6)) is
relatively standard, it is not the same as Nelson's original (see Nelson [22]).
Many forms of EGARCH(P,Q) models exist. Another popular form is

This EGARCH(P,Q) model form appears to offer an advantage in that it does
not explicitly make any assumptions about the conditional probability
distribution (i.e., whether the distribution of is Gaussian or
Student’s t). However, this is not entirely true. Although no distribution is
explicitly assumed in the above equation, generally such an assumption is
required for forecasting as well as Monte Carlo simulation in the absence of
user-specified presample data. In fact, the above equation can easily be
rearranged to highlight the probability distribution.

The particular form of the EGARCH(P,Q) model, Eq. (2-6), implemented in
the GARCH Toolbox is selected because it closely resembles Nelson's original
form and is widely used.

• Although EGARCH(P,Q) models require no parameter constraints to ensure
positive conditional variances, stationarity constraints are necessary. Since
an EGARCH(P,Q) model is treated as an ARMA(P,Q) model for the

P Q
Gi Aj

Gi

log σt
2 κ Gilogσt i–

2

i 1=

P

∑ Aj

εt j– Ljεt j–+

σt j–

j 1=

Q

∑+ +=

zt εt σt⁄()=

Conditional Mean and Variance Models

2-11

logarithm of the conditional variance, the GARCH Toolbox imposes
non-linear constraints on the coefficients to ensure that the eigenvalues
of the characteristic polynomial are all inside the unit circle (see, for
example, page 2969 of Bollerslev, Engle, and Nelson [6], and page 12 of
Bollerslev, Chou, and Kroner [5]).

• The EGARCH(P,Q) and GJR(P,Q) models, Eq. (2-6) and Eq. (2-5), are both
asymmetric models designed to capture the leverage effect, or negative
correlation, between asset returns and volatility. Both the EGARCH(P,Q)
and GJR(P,Q) models include leverage terms that explicitly take into
account the sign as well as the magnitude of the innovation noise term.
Although both models are designed to capture the leverage effect, the
manner in which they do so is markedly different.

For EGARCH(P,Q) models, the leverage coefficients are applied to the
actual innovations . For GJR(P,Q) models, the leverage coefficients
enter the model through a Boolean indicator, or dummy, variable. For this
reason, if the leverage effect does indeed hold, the leverage coefficients
should be negative for EGARCH(P,Q) models and positive for GJR(P,Q)
models. This is in contrast to GARCH(P,Q) models, in which the sign of the
innovation is ignored.

• Although GARCH(P,Q) and GJR(P,Q) models, Eq. (2-4) and Eq. (2-5),
include terms related to the model innovations, , EGARCH(P,Q)
models, Eq. (2-6), include terms related to the standardized innovations,

, such that acts as the forcing variable for both the
conditional variance and the error. In this respect, EGARCH(P,Q) models
are fundamentally unique.

• Generally, there are no asymmetries in foreign exchange rates, and therefore
asymmetric EGARCH(P,Q) and GJR(P,Q) conditional variance models are
often inappropriate for modeling such return series.

Gi

Li
εt i–

Li

εt ztσt=

zt εt σt⁄= zt

2 GARCH Overview

2-12

The Default Model
The GARCH Toolbox default model is the simple (yet common) constant mean
model with GARCH(1,1) Gaussian innovations, based on Eq. (2-2) and
Eq. (2-4).

(2-7)

(2-8)

In the conditional mean model, Eq. (2-7), the returns, , consist of a simple
constant, plus an uncorrelated, white noise disturbance, . This model is often
sufficient to describe the conditional mean in a financial return series. Most
financial return series do not require the comprehensiveness that an ARMAX
model provides.

In the conditional variance model, Eq. (2-8), the variance forecast, , consists
of a constant plus a weighted average of last period's forecast, , and last
period's squared disturbance, . Although financial return series, as
defined in Eq. (1-1) and Eq. (1-2), typically exhibit little correlation, the
squared returns often indicate significant correlation and persistence. This
implies correlation in the variance process, and is an indication that the data
is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (2-7) and Eq. (2-8) has
several benefits:

• It represents a parsimonious model that requires you to estimate only four
parameters (, , , and). According to Box and Jenkins [8], the fewer
parameters to estimate, the less that can go wrong. Elaborate models often
fail to offer real benefits when forecasting (see Hamilton [18], page 109).

• The simple GARCH(1,1) model captures most of the variability in most
return series. Small lags for and are common in empirical applications.
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate
for modeling volatilities even over long sample periods (see Bollerslev, Chou,
and Kroner [5], pages 10 and 22).

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=

yt
εt

σt
2

σt 1–
2

εt 1–
2

C κ G1 A1

P Q

Primary Toolbox Functions

2-13

Primary Toolbox Functions
Use of the GARCH Toolbox focuses on three high-level processing functions:
garchfit, garchpred, and garchsim, for model estimation, forecasting, and
Monte Carlo simulation, respectively. A fourth function, garchinfer, infers the
innovations and conditional standard deviations via inverse filtering, and is
closely related to garchfit in that they both call the appropriate objective
function.

These functions use a GARCH specification structure to share information
about the specified model. The specification structure contains the model
orders for the chosen conditional mean and variance models, and the
parameters for those models. All these functions accept a specification
structure as input, but only garchfit can update the structure and provide it
as an output. (See “GARCH Specification Structure” on page 3-1 for detailed
information about the structure.)

An analysis process using real-world data might involve calling these
processing functions:

garchfit Estimates the model parameters. garchfit can accept a
specification structure as an input. If you provide only the
model orders for the chosen conditional mean and variance
model, garchfit populates it with the coefficients resulting
from the estimation process. If you provide, in addition, valid
coefficients, garchfit uses them as initial estimates that are
refined by the estimation process. If you provide no
specification structure, garchfit assumes the default model
(see “The Default Model” on page 2-12).

 In all cases, garchfit returns an updated specification
structure, which encapsulates parameter estimates. This
output structure is of the same form as the input structure,
and you can use it as an input for further modeling.

2 GARCH Overview

2-14

garchpred Forecasts returns and conditional standard deviations. It
accepts as input the specification structure provided by the
estimation engine garchfit. You can also use garchpred to
forecast volatility of asset returns over multiperiod holding
intervals, or to forecast the standard errors of conditional
mean forecasts.

garchsim Simulates one or more sample paths for the return series,
innovations, and conditional standard deviation processes, for
the specified conditional mean and variance model. You can
use these sample paths to perform Monte Carlo simulation of a
given process.

Analysis and Estimation Example Using the Default Model

2-15

Analysis and Estimation Example Using the Default Model
The example in this section uses the GARCH Toolbox default model to model a
foreign exchange series. Specifically, the example explores

• “Preestimation Analysis” on page 2-15

• “Parameter Estimation” on page 2-23

• “Postestimation Analysis” on page 2-26

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

For more information see “Model Selection and Analysis” on page 8-1.

Preestimation Analysis
When estimating the parameters of a composite conditional mean/variance
model, you may occasionally encounter convergence problems. For example,
the estimation may appear to stall, showing little or no progress. It may
terminate prematurely prior to convergence. Or, it may converge to an
unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a prefit analysis. This
section uses an example to show techniques such as plotting the return series,
and examining the ACF and PACF, as well as some preliminary tests,
including Engle’s ARCH test and the Q-test. The goal is to avoid convergence
problems by selecting the simplest model that adequately describes your data.

The following preestimation analysis example loads the data in the form of a
price series, then converts the price series to a return series. It checks the
return series for correlation, and then quantifies the correlation.

2 GARCH Overview

2-16

1 Load the raw data: daily exchange rate. Start by loading the MATLAB
binary file garchdata.mat, and examining its contents using the Workspace
Browser.

load garchdata

The data consists of three single-column vectors of different lengths,
DEM2GBP, NASDAQ, and NYSE. Each vector is a separate price series for the
named group. (See “Data Sets” on page 1-11 for more information about
these data sets.) You can also use the whos command to see all the variables
in the current workspace.

whos

 Name Size Bytes Class

 DEM2GBP 1975x1 15800 double array
 NASDAQ 3028x1 24224 double array
 NYSE 3028x1 24224 double array

Grand total is 8031 elements using 64248 bytes

This example uses DEM2GBP, which contains daily price observations of the
Deutschemark/British Pound foreign exchange rate. Use the MATLAB plot
function to examine the data.

Analysis and Estimation Example Using the Default Model

2-17

plot([0:1974],DEM2GBP)
set(gca,'XTick',[1 659 1318 1975])
set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...
 'Jan 1992'})
ylabel('Exchange Rate')
title('Deutschmark/British Pound Foreign Exchange Rate')

Note The set command allows you to set object properties. This example
uses it to set the position of and relabel the x-axis ticks of the current figure.

2 Convert the prices to a return series. Because GARCH modeling assumes
a return series, you need to convert the prices to returns. Use the utility
function price2ret, and then examine the result.

Jan 1984 Jan 1986 Jan 1988 Jan 1992
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

E
xc

ha
ng

e
R

at
e

Deutschmark/British Pound Foreign Exchange Rate

2 GARCH Overview

2-18

dem2gbp = price2ret(DEM2GBP);

The workspace information shows both the 1975-point price series and the
1974-point return series derived from it.

Now, use the MATLAB plot function to see the return series. Notice the
presence of volatility clustering in the raw return series.

plot(dem2gbp)
set(gca,'XTick',[1 659 1318 1975])
set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...
 'Jan 1992'})
ylabel('Return')
title('Deutschmark/British Pound Daily Returns')

3 Check for correlation in the return series. You can check qualitatively for
correlation in the raw return series by calling the functions autocorr and
parcorr to examine the sample autocorrelation function (ACF) and
partial-autocorrelation (PACF) function, respectively.

The autocorr function computes and displays the sample ACF of the
returns, along with the upper and lower standard deviation confidence

Jan 1984 Jan 1986 Jan 1988 Jan 1992
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

R
et

ur
n

Deutschmark/British Pound Daily Returns

Analysis and Estimation Example Using the Default Model

2-19

bounds, based on the assumption that all autocorrelations are zero beyond
lag zero.

autocorr(dem2gbp)
title('ACF with Bounds for Raw Return Series')

Similarly, the parcorr function displays the sample PACF with upper and
lower confidence bounds.

parcorr(dem2gbp)
title('PACF with Bounds for Raw Return Series')

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

ACF with Bounds for Raw Return Series

2 GARCH Overview

2-20

Since the individual ACF values can have large variances and can also be
autocorrelated, you should view the sample ACF and PACF with care (see
Box, Jenkins, Reinsel [8], pages 34 and 186). However, as preliminary
identification tools, the ACF and PACF provide some indication of the broad
correlation characteristics of the returns. From these figures for the ACF
and PACF, there is very little indication that you need to use any correlation
structure in the conditional mean. Also, notice the similarity between the
graphs.

4 Check for correlation in the squared returns. Although the ACF of the
observed returns exhibits little correlation, the ACF of the squared returns
may still indicate significant correlation and persistence in the second-order
moments. Check this by plotting the ACF of the squared returns.

autocorr(dem2gbp.^2)
title('ACF of the Squared Returns')

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

PACF with Bounds for Raw Return Series

Analysis and Estimation Example Using the Default Model

2-21

This figure shows that, although the returns themselves are largely
uncorrelated, the variance process exhibits some correlation. This is
consistent with the earlier discussion in the section, “The Default Model” on
page 2-12. Note that the ACF shown in this figure appears to die out slowly,
indicating the possibility of a variance process close to being nonstationary.

Note The syntax in the preceding command, an operator preceded by the dot
operator (.), indicates that the operation is performed on an
element-by-element basis. In the preceding command, dem2gbp.^2 indicates
that each element of the vector dem2gbp is squared.

5 Quantify the correlation. You can quantify the preceding qualitative
checks for correlation using formal hypothesis tests, such as the
Ljung-Box-Pierce Q-test and Engle's ARCH test.

The function lbqtest implements the Ljung-Box-Pierce Q-test for a
departure from randomness based on the ACF of the data. The Q-test is most
often used as a postestimation lack-of-fit test applied to the fitted

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

ACF of the Squared Returns

2 GARCH Overview

2-22

innovations (i.e., residuals). In this case, however, you can also use it as part
of the prefit analysis because the default model assumes that returns are
just a simple constant plus a pure innovations process. Under the null
hypothesis of no serial correlation, the Q-test statistic is asymptotically
Chi-Square distributed (see Box, Jenkins, Reinsel [8], page 314).

The function archtest implements Engle's test for the presence of ARCH
effects. Under the null hypothesis that a time series is a random sequence of
Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also
asymptotically Chi-Square distributed (see Engle [12], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean
decision flag. H = 0 implies that no significant correlation exists (i.e., do not
reject the null hypothesis). H = 1 means that significant correlation exists
(i.e., reject the null hypothesis). The remaining outputs are the P-value
(pValue), the test statistic (Stat), and the critical value of the Chi-Square
distribution (CriticalValue).

Ljung-Box-Pierce Q-Test. Using lbqtest, you can verify, at least
approximately, that no significant correlation is present in the raw returns
when tested for up to 10, 15, and 20 lags of the ACF at the 0.05 level of
significance.

[H,pValue,Stat,CriticalValue] = ...
 lbqtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
 0 0.7278 6.9747 18.3070
 0 0.2109 19.0628 24.9958
 0 0.1131 27.8445 31.4104

However, there is significant serial correlation in the squared returns when
you test them with the same inputs.

[H,pValue,Stat,CriticalValue] = ...
 lbqtest((dem2gbp-mean(dem2gbp)).^2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]

Analysis and Estimation Example Using the Default Model

2-23

ans =
 1.0000 0 392.9790 18.3070
 1.0000 0 452.8923 24.9958
 1.0000 0 507.5858 31.4104

Engle's ARCH Test. You can also perform Engle’s ARCH test using the
function archtest. This test also shows significant evidence in support of
GARCH effects (i.e., heteroscedasticity).

[H,pValue,Stat,CriticalValue] = ...
 archtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
 1.0000 0 192.3783 18.3070
 1.0000 0 201.4652 24.9958
 1.0000 0 203.3018 31.4104

Each of these examples extracts the sample mean from the actual returns.
This is consistent with the definition of the conditional mean equation of the
default model, in which the innovations process is , and is the
mean of .

Parameter Estimation
This section continues the example begun in “Preestimation Analysis” on
page 2-15. It estimates model parameters, then examines the estimated
GARCH model.

1 Estimate the Model Parameters. The presence of heteroscedasticity,
shown in the previous analysis, indicates that GARCH modeling is
appropriate. Use the estimation function garchfit to estimate the model
parameters. Assume the default GARCH model described in the section
“The Default Model” on page 2-12. This only requires that you specify the
return series of interest as an argument to the function garchfit.

εt yt C–= C
yt

2 GARCH Overview

2-24

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Note Because the default value of the Display parameter in the specification
structure is 'on', garchfit prints diagnostic optimization and summary
information to the command window in the example below. (See fmincon in
the Optimization Toolbox for information about the output of the Display
parameter.)

[coeff,errors,LLF,innovations,sigmas,summary] = ...
 garchfit(dem2gbp);

%%%
 Diagnostic Information

Number of variables: 4

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or Quasi-Newton)
 Nonlinear constraints: armanlc
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 4
 Number of upper bound constraints: 4

Algorithm selected

Analysis and Estimation Example Using the Default Model

2-25

 medium-scale

%%%
 End diagnostic information

 max Directional First-order
 Iter F-count f(x) constraint Step-size derivative optimality Procedure
 1 28 -7916.01 -2.01e-006 7.63e-006 857 1.42e+005
 2 36 -7959.65 -1.508e-006 0.25 389 9.8e+007
 3 45 -7963.98 -3.113e-006 0.125 131 5.29e+006
 4 52 -7965.59 -1.586e-006 0.5 55.9 4.45e+007
 5 65 -7966.9 -1.574e-006 0.00781 101 1.46e+007
 6 74 -7969.46 -2.201e-006 0.125 14.9 2.77e+007
 7 83 -7973.56 -2.663e-006 0.125 36.6 1.45e+007
 8 90 -7982.09 -1.332e-006 0.5 -6.39 5.59e+006
 9 103 -7982.13 -1.399e-006 0.00781 6.49 1.32e+006
 10 111 -7982.53 -1.049e-006 0.25 12.5 1.87e+007
 11 120 -7982.56 -1.186e-006 0.125 3.72 3.8e+006
 12 128 -7983.69 -1.11e-006 0.25 0.184 4.91e+006
 13 134 -7983.91 -7.813e-007 1 0.732 1.22e+006
 14 140 -7983.98 -9.265e-007 1 0.186 1.17e+006
 15 146 -7984 -8.723e-007 1 0.0427 9.52e+005
 16 154 -7984 -8.775e-007 0.25 0.0152 6.33e+005
 17 160 -7984 -8.75e-007 1 0.00197 6.98e+005
 18 166 -7984 -8.763e-007 1 0.000931 7.38e+005
 19 173 -7984 -8.759e-007 0.5 0.000469 7.37e+005
 20 179 -7984 -8.761e-007 1 0.00012 7.22e+005
 21 199 -7984 -8.761e-007 -6.1e-005 0.0167 7.37e+005 Hessian modified twice
 22 213 -7984 -8.761e-007 0.00391 0.00582 7.26e+005 Hessian modified twice
 Optimization terminated successfully:
 Search direction less than 2*options.TolX and
 maximum constraint violation is less than options.TolCon
 No Active Constraints

2 Examine the Estimated GARCH Model. Now that the estimation is
complete, you can display the parameter estimates and their standard
errors using the function garchdisp,

garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Parameters Estimated: 4

2 GARCH Overview

2-26

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -6.1919e-005 8.4331e-005 -0.7342
 K 1.0761e-006 1.323e-007 8.1341
 GARCH(1) 0.80598 0.016561 48.6685
 ARCH(1) 0.15313 0.013974 10.9586

If you substitute these estimates in the definition of the default model,
Eq. (2-7) and Eq. (2-8), the estimation process implies that the constant
conditional mean/GARCH(1,1) conditional variance model that best fits the
observed data is

where = GARCH(1) = 0.80598 and = ARCH(1) = 0.15313. In
addition, = C = -6.1919e-005 and = K = 1.0761e-006.

Postestimation Analysis
The postestimation analysis continues the example begun in “Preestimation
Analysis” on page 2-15 and continued in “Parameter Estimation” on page 2-23.
This part of the example starts by comparing the residuals, conditional
standard deviations, and returns. It then uses plots and quantitative
techniques to compare correlation of the standardized innovations.

1 Compare the Residuals, Conditional Standard Deviations, and Returns.
In addition to the parameter estimates and standard errors, garchfit also
returns the optimized log-likelihood function value (LLF), the residuals
(innovations), and conditional standard deviations (sigmas). Use the
function garchplot to inspect the relationship between the innovations (i.e.,
residuals) derived from the fitted model, the corresponding conditional
standard deviations, and the observed returns.

garchplot(innovations,sigmas,dem2gbp)

yt 6.1919e-005– εt+=

σt
2

1.0761e-006 0.80598σt 1–
2

0.15313εt 1–
2

+ +=

G1 A1
C κ

Analysis and Estimation Example Using the Default Model

2-27

Notice that both the innovations (top plot) and the returns (bottom plot)
exhibit volatility clustering. Also, notice that the sum,

= 0.80598 + 0.15313, is 0.95911, which is close to the integrated,
nonstationary boundary given by the constraints associated with Eq. (2-4).

2 Plot and Compare the Correlation of the Standardized Innovations.
Although the figure in step 1 shows that the fitted innovations exhibit
volatility clustering, if you plot the standardized innovations (the
innovations divided by their conditional standard deviation), they appear
generally stable with little clustering.

plot(innovations./sigmas)
ylabel('Innovation')
title('Standardized Innovations')

0 500 1000 1500 2000
−0.05

0

0.05
Innovations

In
no

va
tio

n

0 500 1000 1500 2000
0

0.005

0.01

0.015
Conditional Standard Deviations

S
ta

nd
ar

d
D

ev
ia

tio
n

0 500 1000 1500 2000
−0.05

0

0.05
Returns

R
et

ur
n

G1 A1+

2 GARCH Overview

2-28

If you plot the ACF of the squared standardized innovations, they also show
no correlation.

autocorr((innovations./sigmas).^2)
title('ACF of the Squared Standardized Innovations')

0 500 1000 1500 2000
−8

−6

−4

−2

0

2

4

6

In
no

va
tio

n

Standardized Innovations

Analysis and Estimation Example Using the Default Model

2-29

Now compare the ACF of the squared standardized innovations in this
figure to the ACF of the squared returns prior to fitting the default model
(See “Preestimation Analysis” on page 2-15, step 4). The comparison shows
that the default model sufficiently explains the heteroscedasticity in the raw
returns.

3 Quantify and Compare Correlation of the Standardized Innovations.
Compare the results below of the Q-test and the ARCH test with the results
of these same tests in the preestimation analysis. In the preestimation
analysis, both the Q-test and the ARCH test indicate rejection (H = 1 with
pValue = 0) of their respective null hypotheses, showing significant
evidence in support of GARCH effects. In the postestimate analysis, using
standardized innovations based on the estimated model, these same tests
indicate acceptance (H = 0 with highly significant pValues) of their
respective null hypotheses and confirm the explanatory power of the default
model.

[H, pValue,Stat,CriticalValue] = ...
 lbqtest((innovations./sigmas).^2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

ACF of the Squared Standardized Innovations

2 GARCH Overview

2-30

ans =
 0 0.5262 9.0626 18.3070
 0 0.3769 16.0777 24.9958
 0 0.6198 17.5072 31.4104

[H, pValue, Stat, CriticalValue] = ...
 archtest(innovations./sigmas,[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
 0 0.5625 8.6823 18.3070
 0 0.4408 15.1478 24.9958
 0 0.6943 16.3557 31.4104

3
GARCH Specification
Structure

Introduction (p. 3-2) Introduces the GARCH specification structure and explains
how the primary analysis and modeling functions operate on
the structure.

Equation Variables and Parameter
Names (p. 3-4)

Associates the variables used in the model equations
(“Conditional Mean and Variance Models” on page 2-6) with
their corresponding parameters in the specification
structure.

Examples of Specification Structures
(p. 3-5)

Uses examples of specification structures to interpret their
contents.

Reading and Writing Specification
Structures (p. 3-8)

Describes the creation and modification of a specification
structure, as well as the retrieval of values from it.

3 GARCH Specification Structure

3-2

Introduction
The GARCH Toolbox maintains the parameters that define a model and control
the estimation process in a specification structure.

For the default model (see “The Default Model” on page 2-12), garchfit can
create the specification structure and store the model orders and estimated
parameters in it. For more complex models, you must use the function
garchset to explicitly specify, in a specification structure, the conditional
variance model you want, the mean and variance model orders, and possibly
the initial coefficient estimates.

The primary analysis and modeling functions, garchfit, garchpred, and
garchsim, all operate on the specification structure. This table describes how
each function uses the specification structure.

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters of a
conditional mean specification of
ARMAX form and a conditional
variance specification of GARCH,
GJR, or EGARCH form.

Input. Optionally accepts a GARCH
specification structure as input. If the
structure contains the model orders (R, M, P, Q)
but no coefficient vectors (C, AR, MA, Regress, K,
ARCH, GARCH, Leverage), garchfit uses
maximum likelihood to estimate the
coefficients for the specified mean and
variance models. If the structure contains
coefficient vectors, garchfit uses them as
initial estimates for further refinement. If you
provide no specification structure, garchfit
assumes, and returns, a specification
structure for the default model (see “The
Default Model” on page 2-12).

Output. Returns a specification structure that
contains a fully specified ARMAX/GARCH
model.

Introduction

3-3

Note See the garchset function reference page for descriptions of all the
specification structure parameters.

garchpred Provides
minimum-mean-square-error
(MMSE) forecasts of the
conditional mean and standard
deviation of a return series, for a
specified number of periods into
the future.

Input. Requires a GARCH specification
structure that contains the coefficient vectors
for the model for which garchpred is to
forecast the conditional mean and standard
deviation.

Output. garchpred does not modify or return
the specification structure.

garchsim Uses Monte Carlo methods to
simulate sample paths for return
series, innovations, and
conditional standard deviation
processes.

Input. Requires a GARCH specification
structure that contains the coefficient vectors
for the model for which garchsim is to
simulate sample paths.

Output. garchsim does not modify or return
the specification structure.

Function Description Use of GARCH Specification Structure

3 GARCH Specification Structure

3-4

Equation Variables and Parameter Names
For the most part, the names of specification structure parameters that define
the ARMAX and GARCH models reflect the variable names of their
corresponding components in the conditional mean and variance model
equations (see “Conditional Mean and Variance Models” on page 2-6).

Conditional Mean Model
In the conditional mean model,

• R and M represent the order of the ARMA(R,M) conditional mean model.

• C represents the constant .

• AR represents the R-element autoregressive coefficient vector .

• MA represents the M-element moving average coefficient vector .

• Regress represents the regression coefficients .

Unlike the other components of the conditional mean equation, has no
representation in the GARCH specification structure. is an optional matrix
of returns that some toolbox functions use as explanatory variables in the
regression component of the conditional mean. For example, could contain
return series of a suitable market index collected over the same period as the
return series . Toolbox functions that allow the use of a regression matrix
provide a separate argument by which you can specify it.

Conditional Variance Models
In the conditional variance models

• P and Q represent the order of the GARCH(P,Q), GJR(P,Q), or EGARCH(P,Q)
conditional variance model.

• K represents the constant .

• GARCH represents the P-element coefficient vector .

• ARCH represents the Q-element coefficient vector .

• Leverage represents the Q-element leverage coefficient vector, , for
asymmetric EGARCH(P,Q) and GJR(P,Q) models.

C

φi

θj

βk

X
X

X

y

κ
Gi

Aj

Lj

Examples of Specification Structures

3-5

Examples of Specification Structures
The following example shows the fields of the specification structure, coeff, for
the estimated default model from “Analysis and Estimation Example Using the
Default Model” on page 2-15. The term to the left of the colon (:) is the
parameter name.

coeff

coeff =
 Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: -6.1919e-005
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 1.0761e-006
 GARCH: 0.8060
 ARCH: 0.1531

When you display a specification structure, only the fields that are applicable
to the specified model are displayed. Notice that R = M = 0 for this model, and
so are not displayed.

By default, the Comment field shown above is automatically generated by
garchset and garchfit. It summarizes the ARMAX and GARCH models used
for the conditional mean and variance equations. You can use garchset to set
the value of the Comment field, but the value you give it will replace this
summary statement.

Following is the display for the MA(1)/GJR(1,1) estimated model from the
example “Specifying Presample Data” on page 5-19. Notice that
length(MA) = M, length(GARCH) = P, and length(ARCH) = Q.

coeff =
 Comment: 'Mean: ARMAX(0,1,0); Variance: GJR(1,1)'
 Distribution: 'Gaussian'
 M: 1
 C: 5.6403e-004
 MA: 0.2501
 VarianceModel: 'GJR'
 P: 1

3 GARCH Specification Structure

3-6

 Q: 1
 K: 1.1907e-005
 GARCH: 0.6945
 ARCH: 0.0249
 Leverage: 0.2454
 Display: 'off'

If you had created the specification structure for the same MA(1)/GJR(1,1)
example, but had not yet estimated the model coefficients, this is what you
would see if you displayed the specification structure.

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
 'Display','off')

spec =
 Comment: 'Mean: ARMAX(0,1,?); Variance: GJR(1,1)'
 Distribution: 'Gaussian'
 M: 1
 C: []
 MA: []
 VarianceModel: 'GJR'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []
 Leverage: []
 Display: 'off'

The empty matrix symbols, [], indicate that these fields are required for the
specified model, but have not yet been assigned values. For the specification to
be complete, these fields must be assigned valid values. You can use garchset
to assign values, e.g., as initial parameter estimates, to these fields. You can
also pass such a specification structure to garchfit, which uses the
parameters it estimates to complete the model specification. You cannot pass
such a structure to garchsim, garchinfer, or garchpred. These functions
require complete specifications.

Examples of Specification Structures

3-7

Note See the garchset function reference page for descriptions of all the
specification structure fields.

3 GARCH Specification Structure

3-8

Reading and Writing Specification Structures
This section discusses

• “Creating and Modifying a Specification Structure” on page 3-8

• “Retrieving Specification Structure Values” on page 3-11

Creating and Modifying a Specification Structure
In general, you must use the function garchset to initially create a
specification structure that, at a minimum, contains the chosen variance model
and the mean and variance model orders. The only exception is the default
model, for which garchfit can create a specification structure. The model
parameters you provide must specify a valid model.

When you create a specification structure, you can specify both the conditional
mean and variance models. Alternatively, you can specify either the
conditional mean or the conditional variance model. If you do not specify both
models, garchset assigns default parameters to the one you did not specify. For
the conditional mean, the default is a constant ARMA(0,0,?) model. For the
conditional variance, the default is a constant GARCH(0,0) model. The
question mark (?) indicates that garchset doesn’t know if you intend to include
a regression component (see “Regression Components in Conditional Mean
Models” on page 7-1).

The following examples create specification structures and display the results.
Note that you only need to type the leading characters that uniquely identify
the parameter. As illustrated here, garchset ignores case for parameter
names.

The Default Model
This is a sampling of statements that all create specification structures for the
default model.

spec = garchset('R',0,'m',0,'P',1,'Q',1);

spec = garchset('p',1,'Q',1);

spec = garchset;

Reading and Writing Specification Structures

3-9

The output of each command is the same. The Comment field summarizes the
model. Because R = M = 0, the fields R, M, AR, and MA are not displayed.

spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: []
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []

ARMA(0,0)/GJR(1,1)
This command accepts the constant default for the mean model.

spec = garchset('VarianceModel','GJR','P',1,'Q',1)

spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GJR(1,1)'
 Distribution: 'Gaussian'
 C: []
 VarianceModel: 'GJR'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []
 Leverage: []

AR(2)/GARCH(1,2) with Initial Parameter Estimates
For this command, garchset infers the model orders from the lengths of the
coefficient vectors. garchset assumes a GARCH(P,Q) conditional variance
process as the default.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
 'GARCH',0.8,'ARCH',[0.1 0.05])

3 GARCH Specification Structure

3-10

spec =

 Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
 Distribution: 'Gaussian'
 R: 2
 C: 0
 AR: [0.5000 -0.8000]
 VarianceModel: 'GARCH'
 P: 1
 Q: 2
 K: 2.0000e-004
 GARCH: 0.8000
 ARCH: [0.1000 0.0500]

Modifying a Specification Structure
This command creates an initial structure, and then updates the existing
structure with additional parameter/value pairs. At each step the result must
be a valid specification structure.

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1);
spec = garchset(spec,'R',1,'Distribution','T')

spec =
 Comment: 'Mean: ARMAX(1,1,?); Variance: EGARCH(1,1)'
 Distribution: 'T'
 DoF: []
 R: 1
 M: 1
 C: []
 AR: []
 MA: []
 VarianceModel: 'EGARCH'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []
 Leverage: []

Reading and Writing Specification Structures

3-11

Retrieving Specification Structure Values
The function garchget retrieves the values of the specification structure fields.

This example creates a specification structure, spec, by providing the model
coefficients, and allowing garchset to infer the model orders from the lengths
of these vectors. garchset assumes the GARCH(P,Q) default variance model.
The example then uses garchget to retrieve the variance model and the model
orders for the conditional mean. Note that you only need to type the leading
characters that uniquely identify the parameter. As illustrated here, garchget
ignores case for parameter names.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
 'GARCH',0.8,'ARCH',[0.1 0.05])
spec =

 Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
 Distribution: 'Gaussian'
 R: 2
 C: 0
 AR: [0.5000 -0.8000]
 VarianceModel: 'GARCH'
 P: 1
 Q: 2
 K: 2.0000e-004
 GARCH: 0.8000
 ARCH: [0.1000 0.0500]

R = garchget(spec,'R')

R =
 2

M = garchget(spec,'m')

M =
 0

var = garchget(spec,'VarianceModel')

var =
 GARCH

3 GARCH Specification Structure

3-12

4

Simulation

Simulating Sample Paths (p. 4-2) Shows you how to simulate single and multiple paths for
return series, innovations, and conditional standard
deviation processes.

Presample Data (p. 4-6) Explains the use of automatically generated and
user-supplied presample data. For automatically generated
presample data, this section also discusses response
tolerance and the minimization of transient effects.

4 Simulation

4-2

Simulating Sample Paths
• “Introduction” on page 4-2

• “Simulating a Single Path” on page 4-3

• “Simulating Multiple Paths” on page 4-5

Introduction
Given models for the conditional mean and variance (see “Conditional Mean
and Variance Models” on page 2-6), the function garchsim can simulate one or
more sample paths for return series, innovations, and conditional standard
deviation processes.

The section “Analysis and Estimation Example Using the Default Model” on
page 2-15 uses the default GARCH(1,1) model to model the
Deutschmark/British pound foreign exchange series. These examples use the
resulting model

to simulate sample paths for return series, innovations, and conditional
standard deviation processes.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Use the following commands to restore your workspace if necessary. The text
of this example omits the display output of the estimation to save space.

load garchdata
dem2gbp = price2ret(DEM2GBP);

yt 6.1919e-005– εt+=

σt
2

1.0761e-006 0.80598σt 1–
2

0.15313εt 1–
2

+ +=

Simulating Sample Paths

4-3

[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
coeff

coeff =
 Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: -6.1919e-005
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 1.0761e-006
 GARCH: 0.8060
 ARCH: 0.1531

Simulating a Single Path
This code generates a single path of 1000 observations starting from the initial
MATLAB random number generator state. Assuming there are 250 trading
days per year, this is roughly fours years’ worth of daily data. (“Introduction”
on page 4-2 tells you how to generate coeff for use in this example.)

randn('state',0);
rand('state',0);
[e,s,y] = garchsim(coeff,1000);

The Workspace Browser shows the result to be a single realization of 1000
observations each for the innovations , conditional standard deviations

, and returns processes. These processes are designated by the
output variables e, s, and y, respectively.

εt{ }
σt{ } yt{ }

4 Simulation

4-4

Now plot the garchsim output data to see what it looks like.

garchplot(e,s,y)

0 200 400 600 800 1000
−0.05

0

0.05
Innovations

In
no

va
tio

n

0 200 400 600 800 1000
0

0.01

0.02
Conditional Standard Deviations

S
ta

nd
ar

d
D

ev
ia

tio
n

0 200 400 600 800 1000
−0.05

0

0.05
Returns

R
et

ur
n

Simulating Sample Paths

4-5

Note If you do not specify the number of observations, the default is 100. For
example, [e,s,y] = garchsim(coeff) produces a single path of 100
observations.

Simulating Multiple Paths
In some cases, you may need multiple realizations. This example uses the same
model to simulate 1000 paths of 200 observations each. (“Introduction” on
page 4-2 tells you how to generate coeff for use in this example.)

[e,s,y] = garchsim(coeff,200,1000);

In this example, the , , and processes are 200-by-1000 element
matrices. These are relatively large arrays, and demand large chunks of
memory. In fact, because of the way the GARCH Toolbox manages transients,
simulating this data requires more memory than the 4800000 bytes indicated
in the Workspace Browser. (See “Automatically Generated Presample Data” on
page 4-6 for more information about transients.)

εt{ } σt{ } yt{ }

4 Simulation

4-6

Presample Data
Because the mean equation and the variance equations can be recursive in
nature, they require initial, or presample, data to initiate the simulation. You
can use one of these methods.

• “Automatically Generated Presample Data” on page 4-6

• “User-Specified Presample Data” on page 4-11

Automatically Generated Presample Data
When you allow garchsim to automatically generate the required initial data,

• garchsim performs independent path simulation. That is, all simulated
realizations are unique in that they evolve independently and share no
common presample conditioning data.

• garchsim generates the presample data in a way that minimizes transient
effects in the output processes.

Automatic Minimization of Transient Effects
garchsim generates output processes in (approximately) steady state by
attempting to eliminate transients in the data it simulates. garchsim first
estimates the number of observations needed for the transients to decay to
some arbitrarily small value, subject to a 10000 observation maximum. It then
generates a number of observations equal to the sum of this estimated value
and the number of observations you request. garchsim then ignores the earlier
estimated number of initial observations needed for the transients to decay
sufficiently, and returns only the requested number of later observations.

To do this, garchsim interprets a GARCH(P,Q) or GJR(P,Q) conditional
variance process as an ARMA(max(P,Q),P) model for the squared innovations,
and interprets an EGARCH(P,Q) process as an ARMA(P,Q) model for the log of
the conditional variance. (See, for example, Bollerslev [4], p.310.) garchsim
then interprets the ARMA model as the correlated output of a linear filter and
estimates its impulse response by finding the magnitude of the largest
eigenvalue of its autoregressive polynomial. Based on this eigenvalue,
garchsim estimates the number of observations, subject to a 10000 maximum,
needed for the magnitude of the impulse response, which begins at 1, to decay
below the default response tolerance 0.01 (i.e., 1 percent). If the conditional
mean has an ARMA(R,M) component, then garchsim also estimates the

Presample Data

4-7

number of observations needed for the impulse response to decay below the
response tolerance. This number is also subject to a 10000 maximum.

The effect of transients in the simulation process parallels that in the
estimation, or inference, process. “Presample Data and Transient Effects” on
page 5-23 provides an example of transient effects in the estimation process.

Specifying a Scalar Response Tolerance
If you want to use a response tolerance other than the default 0.01, you can
specify it via the Tolerance argument. This example compares simulated
observations generated using the default response tolerance, 0.01, and a larger
tolerance 0.05. It uses the model from “Simulating Sample Paths” on page 4-2.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Start by simulating a single path of 200 observations using the default
tolerance 0.01, and setting the scalar integer random generator state to its
initial state 0.

[e1,s1,y1] = garchsim(coeff,200,1,0);
garchplot(e1,s1,y1)

4 Simulation

4-8

Now repeat the simulation, but specify the scalar Tolerance argument as 0.05.

[e5,s5,y5] = garchsim(coeff,200,1,0,[],0.05);
garchplot(e5,s5,y5)

0 20 40 60 80 100 120 140 160 180 200
−0.02

−0.01

0

0.01
Innovations

In
no

va
tio

n

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8
x 10

−3 Conditional Standard Deviations
S

ta
nd

ar
d

D
ev

ia
tio

n

0 20 40 60 80 100 120 140 160 180 200
−0.02

−0.01

0

0.01
Returns

R
et

ur
n

Presample Data

4-9

The observations generated using the 0.05 response tolerance are the same as
those generated for the default 0.01 tolerance, but shifted to the right. This is
because it took fewer observations for the magnitude of the impulse response
to decay below the larger 0.05 tolerance. If you make the Tolerance smaller
than 0.01, note that garchsim might have to generate more observations and
could conceivably reach the 10000 observation transient decay period
maximum or run out of memory.

Storage Considerations
Depending on the values of the parameters in the simulated conditional mean
and variance models, you may need long presample periods for the transients
to die out. Although the simulation outputs may be relatively small matrices,
the initial computation of these transients can result in a large memory burden
and seriously impact performance. Because of this, garchsim imposes a
maximum of 10000 observations to the transient decay period of each
realization. The example in “Simulating Multiple Paths” on page 4-5, which

0 20 40 60 80 100 120 140 160 180 200
−0.02

−0.01

0

0.01
Innovations

In
no

va
tio

n

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8
x 10

−3 Conditional Standard Deviations
S

ta
nd

ar
d

D
ev

ia
tio

n

0 20 40 60 80 100 120 140 160 180 200
−0.02

−0.01

0

0.01
Returns

R
et

ur
n

4 Simulation

4-10

simulates three 200-by-1000 element arrays, requires intermediate storage for
far more than 200 observations.

Other Ways to Minimize Transient Effects
If you suspect that transients persist in the simulated data garchsim returns,
you can use one of these methods to minimize their effect:

• “Oversampling” on page 4-10

• “Recycling Outputs” on page 4-11

Oversampling. Generate samples that are larger than you need, and delete
observations from the beginning of each output series. For example, suppose
you would like to simulate 10 independent paths of 1000 observations each for

, , and starting from a known scalar random number state
(12345).

Start by generating 1200 observations. garchsim generates sufficient
presample data so that it can ignore initial samples that might be affected by
transients. It then returns only the requested 1200 later observations.

[e,s,y] = garchsim(coeff,1200,10,12345);

Further minimize the effect of transients by retaining only the last 1000
observations of interest.

e = e(end-999:end,:);
s = s(end-999:end,:);
y = y(end-999:end,:);

εt{ } σt{ } yt{ }

Presample Data

4-11

Note The example above also illustrates how to specify a scalar random
number generator state. This use corresponds to the rand and randn syntaxes,
rand('state',j) and randn('state',j).

Recycling Outputs. Start by simulating the desired number of observations
without explicitly providing presample data i.e., let garchsim automatically
generate the presample data. Then simulate again, using the simulated
observations as the presample data. You can repeat this process until you are
satisfied that transient effects have been sufficiently eliminated. See
“User-Specified Presample Data” on page 4-11 for information about supplying
presample data.

User-Specified Presample Data
Use the time-series input arrays PreInnovations, PreSigmas, and PreSeries
to explicitly specify all required presample data. These presample arrays are
associated with the garchsim outputs Innovations, Sigmas, and Series,
respectively. When specified, garchsim uses these presample arrays to initiate
the filtering process and form the conditioning set upon which the simulated
realizations are based.

The PreInnovations, PreSigmas, and PreSeries arrays, as well as their
associated outputs, are column-oriented arrays in which each column is

4 Simulation

4-12

associated with a distinct realization, or sample path. The first row of each
array stores the oldest data and the last row the most recent.

Note that you can specify PreInnovations, PreSigmas, and PreSeries as
matrices (i.e., with multiple columns), or as single-column vectors. In either
case, the following table summarizes the minimum number of rows required to
successfully initiate the simulation process.

If you specify PreInnovations, PreSigmas, and PreSeries as matrices,
garchsim uses each column to initiate simulation of the corresponding column
of the Innovations, Sigmas, and Series outputs. Each of the presample inputs
must have NUMPATHS columns.

If you specify PreInnovations, PreSigmas, and PreSeries as column vectors,
and NUMPATHS is greater than 1, garchsim performs dependent path
simulation. That is, garchsim applies the same vector to each column of the
corresponding Innovations, Sigmas, and Series outputs. All simulated sample
paths share a common conditioning set. Although all realizations evolve
independently, they share common presample conditioning data. Dependent
path simulation enables the simulated sample paths to evolve from a common
starting point, and allows Monte Carlo simulation of forecasts and forecast
error distributions. See “Advanced Example” on page 9-1.

If you specify at least one set, but fewer than three sets, of presample data,
garchsim does not attempt to derive presample observations for those you omit.
If you specify your own presample data, you must specify all that are necessary
for the specified conditional mean and variance models. See the example
“Specifying Presample Data” on page 5-19.

Minimum Number of Rows

garchsim Input
Argument

GARCH(P,Q),
GJR(P,Q)

EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

PreSigmas P max(P,Q)

PreSeries R R

Presample Data

4-13

Note You can also use the garchsim input argument State to specify your
own standardized noise process. See the garchsim reference page for details.

4 Simulation

4-14

5

Estimation

Maximum Likelihood
Estimation (p. 5-2)

Explains how the estimation engine, garchfit, uses maximum
likelihood to estimate the parameters needed to fit the specified
models to a given univariate return series.

Initial Parameter Estimates
(p. 5-4)

Describes the use of both user-supplied and automatically generated
initial parameter estimates. It also explains how garchfit uses
parameter bounds to provide stability in the optimization process.

Presample Observations
(p. 5-11)

Explains how garchfit calculates automatically generated
presample data for the conditional mean model and for each of the
supported conditional variance models. It also explains how to
specify your own presample data.

Termination Criteria and
Optimization Results (p. 5-13)

Discusses the optimization parameters that enable you to influence
the optimization process.

Examples (p. 5-19) Illustrates presample data, transient effects, and lower bound
constraints. It also offers an alternative technique for estimating
ARMA(R,M) parameters.

5 Estimation

5-2

Maximum Likelihood Estimation
Given models for the conditional mean and variance (see “Conditional Mean
and Variance Models” on page 2-6), and an observed univariate return series,
the estimation engine garchfit infers the innovations (i.e., residuals) from the
return series, and estimates, by maximum likelihood, the parameters needed
to fit the specified models to the return series.

garchfit calls the Optimization Toolbox function fmincon to perform
constrained optimization of a scalar function of several variables, i.e., the
log-likelihood function, given a vector of initial parameter estimates (see
“Initial Parameter Estimates” on page 5-4). This is generally referred to as
constrained nonlinear optimization or nonlinear programming. In turn,
fmincon calls the appropriate log-likelihood objective function to estimate the
model parameters via maximum likelihood estimation (MLE). The chosen
log-likelihood objective function proceeds in three steps:

1 Given the vector of current parameter values and the observed data Series,
the log-likelihood function infers the process innovations (i.e., residuals) by
inverse filtering. This inference, or inverse filtering, operation rearranges
the conditional mean equation to solve for the current innovation, :

This equation is a whitening filter, transforming a (possibly) correlated
process into an uncorrelated white noise process .

2 The log-likelihood function then uses the inferred innovations to infer the
corresponding conditional variances via recursive substitution into the
model-dependent conditional variance equations (Eq. (2-4), Eq. (2-5),
Eq. (2-6)) above.

3 Finally, the function uses the inferred innovations and conditional variances
to evaluate the appropriate log-likelihood objective function. If is
Gaussian, the log-likelihood function is

εt

εt C– yt φiyt i–
i 1=

R

∑– θjεt j–

j 1=

M

∑– βkX t k,()
k 1=

Nx

∑–+=

yt εt

εt

σt
2

εt

Maximum Likelihood Estimation

5-3

(5-1)

If is Student’s t, the log-likelihood function is

(5-2)

where is the sample size, i.e., the number of rows in the series . The
degrees of freedom must be greater than 2.

Notice that the conditional mean equation (Eq. (2-2)) and the conditional
variance equations (Eq. (2-4), Eq. (2-5), and Eq. (2-6)) are recursive and, in
general, require presample observations to initiate the inverse filtering. For
this reason, the objective functions shown above are referred to as conditional
log-likelihood functions. That is, evaluation of the log-likelihood function is
conditioned, or based, on a set of presample observations. The methods used to
specify these presample observations are discussed in “Presample
Observations” on page 5-11.

The iterative numerical optimization repeats the three steps described above
until suitable termination criteria are reached. See “Termination Criteria and
Optimization Results” on page 5-13 for details.

LLF T
2
----– log 2π() 1

2
--- logσt

2

t 1=

T

∑–
1
2
--- εt

2 σt
2⁄

t 1=

T

∑–=

εt

LLF Tlog Γ v 1+() 2⁄[]

π1 2⁄ Γ v 2⁄()
--------------------------------- v 2–() 1 2⁄–

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
--- logσt

2

t 1=

T

∑–=

v 1+
2

------------ log 1
εt

2

σt
2

v 2–()
------------------------+

t 1=

T

∑–

T yt{ }
v

5 Estimation

5-4

Initial Parameter Estimates
The constrained nonlinear optimizer, fmincon, requires a vector of initial
parameter estimates. Although garchfit computes initial parameter
estimates if you provide none, at times it may be helpful to compute and specify
your own initial guesses to avoid convergence problems.

This section discusses

• “User-Specified Initial Estimates” on page 5-4

• “Automatically Generated Initial Estimates” on page 5-5

• “Parameter Bounds” on page 5-9

User-Specified Initial Estimates
You can specify complete initial estimates for either or both the conditional
mean equation and the conditional variance equation.

For the conditional mean estimates to be complete, you must specify the C, AR,
and MA parameters, consistent with the orders you specified for R and M; i.e., the
length of AR must be R, and the length of MA must be M. You must also specify
the Regress parameter if you provide a regression matrix . C, AR, MA, and
Regress correspond respectively to , , , and in Eq. (2-2).

Note To remove the constant from the conditional mean model, i.e., to fix
C = 0 without providing initial parameter estimates for the remaining
parameters, set C = NaN (Not-a-Number). In this case, the value of FixC has
no effect.

For the conditional variance estimates to be complete, you must specify the K,
GARCH, and ARCH specification structure parameters for all conditional variance
models, consistent with the orders you specified for P and Q; i.e., the length of
GARCH must be P, and the length of ARCH must be Q. You must also specify the
Leverage parameter for GJR and EGARCH conditional variance models. The
parameters K, GARCH, ARCH, and Leverage correspond respectively to , ,

,and in Eq. (2-4), Eq. (2-5), and Eq. (2-6).

You can use garchset to create the necessary specification structure, Spec, or
you can modify the Coeff structure returned by a previous call to garchfit.

X
C φj θi βk

C

κ Gi
Aj Lj

Initial Parameter Estimates

5-5

If you provide initial parameter estimates for a model equation, you must
provide all the estimated constants and coefficients consistent with the
specified model orders. For example, for an ARMA(2,2) model with no
regression matrix, you must specify the parameters C, AR, and MA. If you specify
only MA, the specification is incomplete, and garchfit ignores the MA you
specified and automatically generates all the requisite initial estimates.

The following specification structure provides C and AR as initial parameter
estimates, but does not provide MA, even though M = 1. In this case, garchfit
ignores the C and AR fields, computes initial parameter estimates, and
overwrites any existing parameters in the incomplete conditional mean
specification.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,...
 'P',1,'Q',1,'K',0.0005,'GARCH',0.8,'ARCH',0.1)
spec =

 Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 R: 1
 M: 1
 C: 0
 AR: 0.5000
 MA: []
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 5.0000e-004
 GARCH: 0.8000
 ARCH: 0.1000

However, since the structure explicitly sets all fields in the conditional
variance model, garchfit uses the specified values of K, GARCH, and ARCH as
initial estimates subject to further refinement.

Automatically Generated Initial Estimates
If you do not provide initial coefficient estimates for a conditional mean or
variance model, or if the estimates you provide are incomplete, garchfit
automatically generates initial estimates. It first estimates the conditional
mean parameters, if necessary, then estimates the conditional variance

5 Estimation

5-6

parameters, if necessary. Again, note that garchfit ignores any incomplete
initial estimates. garchfit estimates initial conditional mean parameters
using standard statistical time-series techniques, dependent upon the
parametric form of the conditional mean equation.

• “Conditional Mean Models Without a Regression Component” on page 5-6

• “Conditional Mean Models with a Regression Component” on page 5-6

• “Conditional Variance Models” on page 5-7

Conditional Mean Models Without a Regression Component

ARMA Models. Initial parameter estimates of general ARMA(R,M) conditional
mean models are estimated by the three-step method outlined in Box, Jenkins,
and Reinsel [8], Appendix A6.2.

1 garchfit estimates the autoregressive coefficients, , by computing the
sample autocovariance matrix and solving the Yule-Walker equations.

2 Using these estimated coefficients, garchfit filters the observed Series to
obtain a pure moving average process.

3 garchfit computes the autocovariance sequence of the moving average
process, and uses it to iteratively estimate the moving average
coefficients, . This last step also provides an estimate of the unconditional
variance of the innovations.

Conditional Mean Models with a Regression Component

ARX Models (No Moving Average Terms Allowed). Initial estimates of the
autoregressive coefficients, , and the regression coefficients, , of the
explanatory data matrix, , are generated by ordinary least squares
regression.

See “Regression Components in Conditional Mean Models” on page 7-1 for
more information.

ARMAX Models (Moving Average Terms Included). Initial parameter estimation of the
general ARMAX conditional mean models requires two steps:

1 garchfit estimates an ARX model by ordinary least squares.

φj

θi

φj βk
X

Initial Parameter Estimates

5-7

2 garchfit estimates an MA(M) = ARMA(0,M) model as outlined in
“Conditional Mean Models Without a Regression Component” on page 5-6.

Conditional Variance Models
As opposed to conditional mean parameters, initial estimates of conditional
variance parameters are based on empirical analysis of financial time series,
and are thus ad hoc. The approach is dependent upon the conditional variance
model you select.

GARCH(P,Q) Models. For GARCH models, garchfit assumes that the sum of the
 and the is close to 1. Specifically, for a

general GARCH(P,Q) model (Eq. (2-4)), garchfit assumes that

If (i.e., lagged conditional variances are included), then garchfit equally
allocates 0.85 out of the available 0.90 to the GARCH coefficients, and
allocates the remaining 0.05 equally among the ARCH coefficients.
specifies an ARCH(Q) model in which garchfit allocates 0.90 equally to the
ARCH terms. Some examples will clarify the approach.

The GARCH(1,1) model is by far the most common, and initial estimates are
expressed as follows:

A GARCH(2,1) model would be initially expressed as

An ARCH(1) model would be initially expressed as

An ARCH(2) model would be initially expressed as

Finally, garchfit estimates the constant of the conditional variance model
by first estimating the unconditional, or time-independent, variance of .

Gi i 1 … P, ,=(), Aj j 1 … Q, ,=(),

G1 … GP A1 … AQ+ + + + + 0.9=

P 0>
P

Q P 0=
Q

σt
2 κ 0.85σt 1–

2
0.05εt 1–

2
+ +=

σt
2 κ 0.425σt 1–

2
0.425σt 2–

2
0.05εt 1–

2
+ + +=

σt
2 κ 0.9εt 1–

2
+=

σt
2 κ 0.45εt 1–

2
0.45εt 2–

2
+ +=

κ
εt{ }

5 Estimation

5-8

In terms of the parameters this can also be expressed as

and so

GJR(P,Q) Models. garchfit treats a GJR(P,Q) model, described in Eq. (2-5), as a
straightforward extension of an equivalent GARCH(P,Q) model with zero
leverage terms. Thus, initial parameter estimates of GJR models are identical
to those of equivalent order GARCH models (see “GARCH(P,Q) Models” on
page 5-7), with the additional assumption that all leverage terms are zero,

EGARCH(P,Q) Models. For EGARCH models garchfit assumes that the sum of
the is 0.9, and the sum of the is 0.2.
Specifically, for a general EGARCH(P,Q) model (Eq. (2-6)), garchfit assumes
that

and

If , i.e., lagged conditional variances are included, then garchfit equally
allocates the available weight of 0.9 to the GARCH coefficients, and equally
allocates the available weight of 0.2 to the ARCH coefficients.

σ2 1
T
---- εt

2

t 1=

T

∑=

σ2 κ

1 Gi

i 1=

P

∑ Aj

j 1=

Q

∑––

κ

1 0.85 0.05+()–
---= =

κ σ2
1 0.85 0.05+()–()=

0.1σ2
=

Li 0= 1 i Q≤ ≤

Gi i 1 … P, ,=(), Aj j 1 … Q, ,=(),

G1 G2 … GP+ + + 0.9=

A1 A2 … AQ+ + + 0.2=

Li 0= 1 i Q≤ ≤

P 0>
P
Q

Initial Parameter Estimates

5-9

Recall that, in EGARCH models, the standardized innovation, , serves as the
forcing variable for both the conditional variance and the error, so that
volatility clustering (i.e., persistence) is entirely captured by the terms. In
other words, EGARCH models make no allowance for the relationship between
the and coefficients regarding initial parameter estimates. Because of
this, EGARCH(0,Q) models ignore the persistence effect commonly associated
with financial returns and are somewhat unusual. Some examples clarify the
approach.

The EGARCH(1,1) model is by far the most common, and initial estimates are
expressed as:

Initial estimates for an EGARCH(2,2) model are expressed as

An EGARCH(0,1) model would be initially expressed as

As you can see, initial parameter estimates for EGARCH models are most
effective when .

Finally, you can estimate the constant of an EGARCH conditional variance
model by noting the approximate relationship between the unconditional
variance of the innovations process, , and the parameters of an
EGARCH(1,1) model:

Parameter Bounds
garchfit bounds some model parameters to provide stability in the
optimization process. See the example “Active Lower Bound Constraint” on

zt

Gi

Gi Aj

logσt
2 κ 0.9logσt 1–

2
0.2 zt 1– E zt 1–()–[]+ +=

logσt
2 κ 0.45logσt 1–

2
0.45logσt 2–

2
++ +=

0.1 zt 1– E zt 1–()–[] 0.1 zt 2– E zt 2–()–[]+

logσt
2 κ 0.2 zt 1– E zt 1–()–[]+=

P 0>

κ

σ2
Gi

κ 1 G1–() logσ2
=

1 0.9–() logσ2
=

0.1 logσ2
=

5 Estimation

5-10

page 5-28 for more information on overriding these bounds in the unlikely
event they become active.

Conditional Mean Model
For the conditional mean model, Eq. (2-2), garchfit bounds the conditional
mean constant and the conditional mean regression coefficients , if any,
in the interval [-10,10]. However, if the coefficient estimates, whether provided
by the user or automatically generated by garchfit, are outside this interval,
garchfit sets the appropriate lower or upper bound equal to the estimated
coefficient.

GARCH(P,Q) and GJR(P,Q) Conditional Variance Models
For GARCH(P,Q) and GJR(P,Q) conditional variance models, Eq. (2-3) and
Eq. (2-4), garchfit uses 5 as an upper bound for the conditional variance
constant . However, if the initial estimate is greater than 5, garchfit uses
the estimated value as the upper bound.

EGARCH(P,Q) Conditional Variance Model
For EGARCH(P,Q) conditional variance models, Eq. (2-5), garchfit places
arbitrary bounds on the conditional variance constant , such that .
However, if the magnitude of the initial estimate is greater than 5, garchfit
adjusts the bounds accordingly.

C βk

κ

κ 5– κ 5≤ ≤

Presample Observations

5-11

Presample Observations
You can explicitly specify all required presample data, or you can allow
garchfit to automatically generate the necessary presample data. “Maximum
Likelihood Estimation” on page 5-2 discusses presample data required to
initiate the inverse filtering and evaluate the conditional log-likelihood
objective function.

This section discusses

• “User-Specified Presample Observations” on page 5-11

• “Automatically Generated Presample Observations” on page 5-11

User-Specified Presample Observations
Use the time-series column vector inputs PreInnovations, PreSigmas, and
PreSeries to explicitly specify all required presample data.The following table
summarizes the minimum number of rows required to successfully initiate the
optimization process.

If you specify at least one set, but fewer than three sets, of presample data,
garchfit does not attempt to derive presample observations for those you omit.
If you specify your own presample data, you must specify all that are necessary
for the specified conditional mean and variance models. See the example
“Specifying Presample Data” on page 5-19.

Automatically Generated Presample Observations
If you do not specify any presample data, garchfit automatically generates the
required presample data.

Minimum Number of Rows

garchfit Input
Argument

GARCH(P,Q),
GJR(P,Q)

EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

PreSigmas P max(P,Q)

PreSeries R R

5 Estimation

5-12

Conditional Mean Models
For conditional mean models with an autoregressive component, garchfit
assigns the R required presample observations (i.e., PreSeries) of the
sample mean of Series. For models with a moving-average component, it sets
the M required presample observations (i.e., PreInnovations) of to their
expected value of zero. With this presample data, garchfit can infer the entire
sequence of innovations for any general ARMAX conditional mean model
regardless of the conditional variance model you select.

garchfit attempts to eliminate the effect of transients in the presample data
it generates. This effect parallels that in the simulation process described in
“Automatically Generated Presample Data” on page 4-6. The example
“Presample Data and Transient Effects” on page 5-23 provides an example of
transient effects in the estimation process.

GARCH(P,Q) Models
Once garchfit computes the innovations, it assigns the sample mean of the
squared innovations

to the P and Q required presample observations of and , respectively. See
Hamilton [18] and Bollerslev [4].

GJR(P,Q) Models
garchfit also assigns the average squared innovation to all required
presample observations of and . In addition, garchfit weights the
Q presample observations of associated with the leverage terms by 0.5 (i.e.,
the probability of a negative past residual).

EGARCH(P,Q) Models
garchfit also assigns the average squared innovation to all P presample
observations of . In addition, it sets all Q presample observations of the
standardized innovations to zero and to the
mean absolute deviation. This has the effect of setting all Q presample ARCH
and leverage terms to zero.

yt

εt

σ2 1
T
---- εt

2

t 1=

T

∑=

σt
2 εt

2

σt
2 εt

2

εt
2

σt
2

zt εt σt⁄()= zt εt σt⁄()=

Termination Criteria and Optimization Results

5-13

Termination Criteria and Optimization Results
There are several fields in the specification structure that allow you to
influence the optimization process. In order of importance, these are

This section discusses

• “MaxIter and MaxFunEvals” on page 5-13

• “TolCon, TolFun, and TolX” on page 5-14

• “Convergence” on page 5-14

• “Optimization Results” on page 5-15

• “Constraint Violation Tolerance” on page 5-16

See the Optimization Toolbox documentation and the garchset function for
additional information about these parameters.

MaxIter and MaxFunEvals
MaxIter is the maximum number of iterations allowed in the estimation
process. Each iteration involves an optimization phase in which garchfit
suitably modifies calculations such as line search, gradient, and step size. The
default value of MaxIter is 400. Although an estimation rarely exceeds
MaxIter, you can increase the value if you suspect that the estimation
terminated prematurely.

MaxFunEvals, a field closely related to MaxIter, specifies the maximum number
of log-likelihood objective function evaluations. The default value is 100 times
the number of parameters estimated in the model. For example, the default
model has four parameters, so the default value of MaxFunEvals for the default
model is 400. When the estimation process terminates prematurely, it is
usually because MaxFunEvals, rather than MaxIter, is exceeded. You can

TolCon Termination tolerance on the constraint violation

TolFun Termination tolerance on the function value

TolX Termination tolerance on the parameter estimates

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

5 Estimation

5-14

increase MaxFunEvals if you suspect that the estimation terminated
prematurely.

The fields MaxFunEvals and MaxIter are purely mechanical in nature.
Although you may encounter situations in which MaxFunEvals or MaxIter is
reached, this is rather uncommon. Increasing MaxFunEvals or MaxIter may
allow successful convergence, but reaching MaxFunEvals or MaxIter is usually
an indication that your model poorly describes the data; in particular, it often
indicates that the model is too complicated. Finally, although MaxFunEvals and
MaxIter can cause the function to stop before a solution is found, they do not
affect the solution once it is found.

TolCon, TolFun, and TolX
The fields TolCon, TolFun, and TolX are tolerance-related parameters that
directly influence how and when convergence is achieved, and can also affect
the solution.

TolCon is the termination tolerance placed on constraint violations, and
represents the maximum value by which parameter estimates can violate a
constraint and still allow successful convergence. See “Conditional Mean and
Variance Models” on page 2-6 for information about these constraints.

TolFun is the termination tolerance placed on the log-likelihood objective
function. Successful convergence occurs when the log-likelihood function value
changes by less than TolFun. See “Optimization Results” on page 5-15 for more
information.

TolX is the termination tolerance placed on the estimated parameter values.
Similar to TolFun, successful convergence occurs when the parameter values
change by less than TolX. See “Optimization Results” on page 5-15 for more
information.

Convergence
TolFun, and TolX have the same default value, 1e-006. The TolCon default is
1e-007. If you experience extreme difficulty in convergence (e.g., the
estimation shows little or no progress, or shows progress but stops early), then
increasing one or more of these parameter values, for example, from 1e-006 to
1e-004, may allow the estimation to converge. If the estimation appears to
converge to a suboptimal solution, then decreasing one or more of these

Termination Criteria and Optimization Results

5-15

parameter values (e.g., from 1e-006 to 1e-007) may provide more accurate
parameter estimates.

Note You can avoid many convergence difficulties by performing a prefit
analysis. “Analysis and Estimation Example Using the Default Model” on
page 2-15 describes graphical techniques, e.g., plotting the return series, and
examining the ACF and PACF. It also discusses some preliminary tests,
including Engle’s ARCH test and the Q-test.

“Model Selection and Analysis” on page 8-1 discusses other tests to help you
determine the appropriateness of a specific GARCH model. It also explains
how equality constraints can help you assess parameter significance. “GARCH
Limitations” on page 1-4 mentions some limitations of GARCH models that
could affect convergence.

Optimization Results
In contrast to MaxIter and MaxFunEvals, the tolerance fields TolCon, TolFun,
and TolX do affect the optimization results (see “TolCon, TolFun, and TolX” on
page 5-14). At successful termination, assuming iterative display is selected,
you will typically see a message similar to one of the following:

Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

Optimization terminated successfully:
First-order optimality measure less than options.TolFun and
maximum constraint violation is less than options.TolCon

Increasing TolFun or TolX from the default of 1e-6 to, for example, 1e-5,
relaxes one or both of the first two termination criteria, often resulting in a
slightly less accurate solution. Similarly, decreasing TolFun or TolX to, for

5 Estimation

5-16

example, 1e-7, restricts one or both of the first two termination criteria, often
resulting in a slightly more accurate solution, but may also require more
iterations. However, experience has shown that the default value of 1e-6 for
TolFun and TolX is almost always sufficient, and changing the value is unlikely
to significantly affect the estimation results for GARCH modeling. For this
reason, it is recommended that you accept the default value for TolFun and
TolX.

The GARCH Toolbox default value of TolCon is 1e-7, and changing the value
of TolCon can significantly affect the solution in situations in which a
constraint is active. For the GARCH Toolbox, from a practical standpoint,
TolCon is the most important optimization-related field, and an additional
discussion of its significance and use is helpful.

Whenever garchfit actively imposes parameter constraints (other than
user-specified equality constraints) during the estimation process, the
statistical results based on the maximum likelihood parameter estimates are
invalid. (See Hamilton [18], page 142.) This is because statistical inference
relies on the log-likelihood function’s being approximately quadratic in the
neighborhood of the maximum likelihood parameter estimates. This cannot be
the case when the estimates fail to fall in the interior of the parameter space.

Constraint Violation Tolerance
At each step in the optimization process, garchfit evaluates the constraints
described in “Conditional Mean and Variance Models” on page 2-6 against the
current intermediate solution vector. For each user-specified equality
constraint, it determines whether or not there is a violation whose absolute
value is greater than TolCon. For each inequality constraint (including lower
and upper bounds), it determines whether or not the inequality is violated by
more than TolCon. If either TolFun or TolX exit condition is satisfied, and if the
maximum of any violations is less than TolCon, then the optimization
terminates successfully. (See “TolCon, TolFun, and TolX” on page 5-14.)

Strict Inequality Constraints
For the Optimization Toolbox, the numerical optimizer, fmincon, defines
inequality constraints as a less than or equal to condition. However, many
GARCH Toolbox inequality constraints are strict inequalities that specifically
exclude exact equality. For this reason the GARCH Toolbox interprets TolCon
differently from the Optimization Toolbox.

Termination Criteria and Optimization Results

5-17

While TolCon applies to both strict inequalities and those that are not strict,
garchfit provides special handling for strict inequalities. Specifically,
garchfit associates each strict inequality constraint with its theoretical
bound, or limit. However, to avoid the possibility of violating strict inequality
constraints, garchfit defines the actual bound for each such constraint as the
theoretical bound offset by 2*TolCon. Since the optimization can successfully
terminate if the actual bound is violated by as much as TolCon, the end result
is that any given strict inequality constraint is allowed to approach its
theoretical bound to within TolCon.

Single Parameter Strict Inequality Constraints
Although it is possible for an estimate of a strict inequality constraint that
involves a single parameter to terminate a distance TolCon from its theoretical
bound, experience has shown that this is unlikely. Examples of such
constraints are the conditional variance constant for the GARCH(P,Q)
and GJR(P,Q) models, and the degrees of freedom for the Student’s t
distribution. Typically, when the lower or upper bound of such a
single-parameter inequality constraint is active, the estimate remains
2*TolCon from the bound.

Note that even though the possibility is remote that an estimate of a single
parameter constraint will terminate a distance TolCon from its theoretical
bound, the garchfit approach for handling strict inequalities still allows for it.

As an illustration, assume TolCon = 1e-7 (i.e., the GARCH Toolbox default
value), and consider the default GARCH(1,1) model:

with constraints

When the lower bound constraint is active, the estimated value of is
typically .

κ 0>
v 2>

yt C εt+=

σt
2 κ G1σt 1–

2
A1εt 1–

2
+ +=

κ 0>
G1 A1+ 1<

G1 0≥

A1 0≥

κ 0> κ
κ 2e 7– 2*TolCon= =

5 Estimation

5-18

Relaxing Constraint Tolerance Limits
Experience has shown that relaxing TolCon is more apt to remove an active
constraint in some cases than in others. For inequality constraints with a
single parameter, such as for the GARCH(P,Q) and GJR(P,Q) models and

 for the Student’s t distribution, decreasing TolCon may relax the
constraint such that it is no longer active. The example “Active Lower Bound
Constraint” on page 5-28 explains how to identify such a condition by
examining the summary output structure.

This is not generally true for linear inequality constraints with multiple
parameters. An example is . When this constraint is active, the
estimated values of and are typically such that

. Decreasing TolCon to, say, 1e-8 allows
 to approach 1.0 a bit more closely, but the linear inequality constraint

is likely to remain active.

κ 0>
v 2>

G1 A1+ 1<
G1 A1

G1 A1+ 0.9999999 1.0 TolCon–= =
G1 A1+

Examples

5-19

Examples
• “Specifying Presample Data” on page 5-19

• “Presample Data and Transient Effects” on page 5-23

• “Alternative Technique for Estimating ARMA(R,M) Parameters” on
page 5-27

• “Active Lower Bound Constraint” on page 5-28

• “Determining Convergence Status” on page 5-31

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Specifying Presample Data
This example shows you how to specify your own presample data to initiate the
estimation process. It highlights the formal column-oriented nature of the
presample time-series inputs.

1 Load the Nasdaq data set and convert prices to returns.

load garchdata
nasdaq = price2ret(NASDAQ);

Suppose, for example, that you want to segment the Nasdaq data in an effort
to compare estimation results obtained from a relatively stable period to
those from a period of relatively high volatility. If you examine the Nasdaq
returns, there is a rather distinct increase in volatility starting,
approximately, in December 1997. Roughly, this is the 2000th observation.

plot(nasdaq)
axis([0 length(nasdaq) -0.15 0.15])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])

5 Estimation

5-20

set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...
 'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
ylabel('Return')
title('Daily Returns')

2 For this example, create a specification structure to model the Nasdaq
returns as an MA(1) process with GJR(1,1) residuals,

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
 'Display','off');

3 Estimate the parameters, standard errors, and inferred residuals and
standard deviations using the first 2000 observations, allowing garchfit to
automatically generate the necessary presample observations. Then display
the estimated coefficients and errors.

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq(1:2000));
garchdisp(coeff,errors)

Jan 1990 Jan 1992 Jan 1994 Jan 1996 Jan 1998 Jan 2000 Jan 2002

−0.1

−0.05

0

0.05

0.1

0.15
R

et
ur

n
Daily Returns

Examples

5-21

 Mean: ARMAX(0,1,0); Variance: GJR(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00056403 0.00023455 2.4048
 MA(1) 0.25006 0.024165 10.3480
 K 1.1907e-005 1.528e-006 7.7931
 GARCH(1) 0.69447 0.033664 20.6295
 ARCH(1) 0.024937 0.017695 1.4093
 Leverage(1) 0.24541 0.030517 8.0420

Since this particular conditional mean model has no regression component,
you can obtain the same estimation results by calling garchfit with an
empty regression matrix, X = [], as a placeholder for the third input,

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,...
 nasdaq(1:2000),[]);

4 However, to specify your own presample data, you need to specify additional
inputs. If you provide presample data, you must provide all necessary
presample data, and it must be in the form of column vectors of sufficient
length. This is because the inputs PreInnovations, PreSigmas, and
PreSeries represent time series in a formal sense. (See “Presample
Observations” on page 5-11.)

From the table in “Presample Observations”, the length of PreInnovations
must be at least max(M,Q) = 1, the length of PreSigmas must be at least
P = 1, and PreSeries can be empty or unspecified altogether because R = 0.

Now estimate the same model from the later high-volatility period, using the
inferred residuals and standard deviations from the previous period as the
presample data:

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],eFit,sFit);
garchdisp(coeff, errors)

 Mean: ARMAX(0,1,0); Variance: GJR(1,1)

5 Estimation

5-22

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00065398 0.00060488 1.0812
 MA(1) 0.012699 0.035131 0.3615
 K 1.7845e-005 3.9153e-006 4.5578
 GARCH(1) 0.85799 0.026246 32.6906
 ARCH(1) 0.016147 0.022595 0.7146
 Leverage(1) 0.17433 0.033234 5.2455

Comparing the estimation results from the two periods reveals a marked
difference. Notice that the last input, PreSeries, is unnecessary and is left
unspecified.

Since the example uses only the most recent observations of PreInnovations,
PreSigmas, and PreSeries, any of the following calls to garchfit produce
identical estimation results.

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
 eFit(end),sFit(end));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
 eFit(end),sFit(end),nasdaq(1:2000));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),...
 [],eFit,sFit,nasdaq(1999:2000));

The first equivalent call passes in the minimum required presample
observations of past residuals and standard deviations, which in this case is
the last inferred observation of each. The last two equivalent calls specify an
unnecessary presample return series, which garchfit ignores.

If, for example, the original specification included an AR(2) model (i.e., = 2),
then at least the last two Nasdaq returns are needed to initiate estimation. In
this case, the last two calls to garchfit above would produce identical results
for conditional mean models with AR components up to 2nd order.

R

Examples

5-23

Presample Data and Transient Effects
This example simulates a return series, yTrue, then uses the inference function
garchinfer to infer and from the simulated return series. First, the
example uses automatically generated presample data to infer the
approximate residuals and conditional standard deviation processes, and then
uses explicitly specified presample data to infer the exact residuals and
conditional standard deviation processes. The example finally compares the
approximate conditional standard deviation processes with the exact
conditional standard deviations processes to reveal the effect of transients in
the approximate results. The effect of transients in the estimation, or
inference, process parallels that in the simulations process described in
“Automatically Generated Presample Data” on page 4-6.

Note This example uses garchinfer, rather than garchfit, to avoid
introducing differences as a result of the optimization. While garchsim uses
an ARMA model as a linear filter to transform an uncorrelated input
innovations process into a correlated output returns process ,
garchinfer reverses this process (as does garchfit) by inferring innovations

 and standard deviation processes from the observations in .

1 Specify a time series as an AR(2) conditional mean model and GARCH(1,2)
conditional variance model. Note that this is an elaborate specification,
typically unwarranted for a real-world financial time series, and is meant
for illustration purposes only.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
 'GARCH',0.8,'ARCH',[0.1 0.05])
spec =

 Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
 Distribution: 'Gaussian'
 R: 2
 C: 0
 AR: [0.5000 -0.8000]
 VarianceModel: 'GARCH'
 P: 1
 Q: 2
 K: 2.0000e-004

εt{ } σt{ }

εt{ } yt{ }

εt{ } σt{ } yt{ }

5 Estimation

5-24

 GARCH: 0.8000
 ARCH: [0.1000 0.0500]

2 Simulate 102 observations for each of 5 realizations and reserve the first 2
rows of observations for the presample data needed by garchinfer in step 4.
From the table in “User-Specified Presample Data” on page 4-11, notice that
the PreInnovations array must have at least max(M,Q) = 2 rows,
PreSigmas must have at least P = 1 row, and PreSeries must have at least
R = 2 rows. Add the intial state = 0 as a trailing input argument.

[eTrue,sTrue,yTrue] = garchsim(spec,102,5,0);

3 Using observations 3 and beyond as the observed return series input, call
garchinfer without any explicit presample data to infer the approximate
residuals and conditional standard deviations based on the default, or
automatic, presample data inference approach (see the garchfit and
garchinfer functions for details).

[eApprox,sApprox] = garchinfer(spec,yTrue(3:end,:));

Examples

5-25

4 Call garchinfer again, but this time use the first two rows of the true
simulated data as presample data. Use of the presample data allows you to
infer the exact residuals and conditional standard deviations,

[eExact,sExact] = garchinfer(spec,yTrue(3:end,:),[],...
 eTrue(1:2,:),sTrue(1:2,:),yTrue(1:2,:));

5 Estimation

5-26

5 Compare the first realization of the approximate and the exact inferred
conditional standard deviations reveals the distinction between
automatically generated and user-specified presample data.

plot(sApprox(:,1),'red')
grid('on'),hold('on')
plot(sExact(:,1),'blue')
title('Approximate Versus Exact Inferred Standard Deviations')

Notice that the approximate and exact standard deviations are
asymptotically identical. The only difference between the two curves is
attributable to the transients induced by the default initial conditions.

In fact, if you were to plot the first realization of the original simulated
conditional standard deviations, sTrue(3:end,1), on the current figure, it
would lie completely on top of the blue curve.

Although the figure highlights the first realization of conditional standard
deviations, the comparison holds for any realization, and for the inferred
residuals as well.

0 20 40 60 80 100
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08
Approximate Versus Exact Inferred Standard Deviations

Examples

5-27

Thus, this example reveals the link between simulation and inference:
garchsim can be thought of as a correlation filter capable of processing multiple
realizations simultaneously, and is the complement of garchinfer, which can
be thought of as a whitening, or inverse, filter capable of processing multiple
realizations simultaneously. Although the estimation engine garchfit is
capable of processing only a single realization at a time, the transient effects
highlighted in this example are exactly the same when applied to the
estimation.

Alternative Technique for Estimating ARMA(R,M)
Parameters
This example illustrates how to use the presample inputs PreInnovations and
PreSeries to estimate the parameters of ARMA(R,M) models by a popular
alternative technique. It assumes a simple constant variance model, and
highlights the GARCH Toolbox as a general-purpose univariate time-series
processor.

Default Method
As mentioned above, estimation requires presample data to initiate the inverse
filtering process. In the absence of any explicit presample data, garchfit
assigns the required presample observations of , i.e., Series, the sample
mean of Series. It also assigns the required presample observations of ,
i.e., the innovations, or residuals, their expected value of zero. This method
then calculates the log-likelihood objective function value using all the
available data in Series, and is the default method used by the GARCH
Toolbox.

Alternative Technique
Another popular method also sets the required presample observations of
the residuals, , to zero, but uses the first actual observations of Series as
initial values. Thus, are used to initiate the inverse filter, and
the log-likelihood objective function value is based on the remaining
observations. See Hamilton [18], page 132, or Box, Jenkins, and Reinsel [8],
pages 236-237.

For example, assume you have some hypothetical time series, xyz, and you
want to estimate an ARMA(R,M) model with constant conditional variances.
Using the alternative presample method, you would exclude the first
observations of xyz from the input Series, and reserve them for the input

R yt
M εt

M
εt R

y1 y2 … yR, , ,{ }

R

5 Estimation

5-28

PreSeries. Specifically, you would set the input Series = xyz(R+1:end),
PreInnovations = zeros(M,1), PreSigmas = [], and
PreSeries = xyz(1:R).

Active Lower Bound Constraint
This example illustrates an active lower bound constraint, , for the
conditional variance constant . This constraint is required for GARCH and
GJR variance models to ensure a positive conditional variance process. It also
illustrates how to identify such active constraints, and what to do about this
most commonly encountered active constraint. See “Termination Criteria and
Optimization Results” on page 5-13.

1 Load the NYSE data set and convert prices to returns.

load garchdata
nyse = price2ret(NYSE);

plot(nyse)
axis([0 length(nyse) -0.08 0.06])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])
set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...
 'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
set(gca,'YTick',[-0.08:0.02:0.06])
ylabel('Return')
title('Daily Returns')

κ 0>
κ

Examples

5-29

2 Estimate a default GARCH(1,1) model and print the estimation results. For
this example, notice that TolCon = 1e-6, and iterative display is disabled
for brevity.

spec = garchset('Display','off','P',1,'Q',1,'TolCon',1e-6);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);
garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00051941 0.00013701 3.7910
 K 2e-006 2.8192e-007 7.0943

Jan 1990 Jan 1992 Jan 1994 Jan 1996 Jan 1998 Jan 2000 Jan 2002
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

R
et

ur
n

Daily Returns

5 Estimation

5-30

 GARCH(1) 0.87166 0.0095167 91.5925
 ARCH(1) 0.10419 0.0073771 14.1238

3 Examination of these results reveals the estimated variance constant
K = 2e-006 = 0 + 2*TolCon = 2*TolCon, i.e., is equal to the theoretical
lower bound plus 2*TolCon. You can see this by printing the summary
structure and looking at the constraints message field:

summary

summary =
 warning: 'No Warnings'
 converge: 'Function Converged to a Solution'
 constraints: 'Boundary Constraints Active: Standard
 Errors May Be Inaccurate'
 covMatrix: [4x4 double]
 iterations: 13
 functionCalls: 115
 lambda: [1x1 struct]

4 Print the lower and upper bound LaGrange multipliers and examine them
for nonzero values:

[summary.lambda.lower summary.lambda.upper]

ans =
 1.0e+006 *

 0 0
 7.3602 0
 0 0
 0 0

Notice that lower and upper bound LaGrange multipliers are ordered
exactly as displayed by garchdisp. From this result, you can clearly see that
the lower bound constraint is active.

5 Repeat the estimation with the default TolCon = 1e-7 and verify that the
constraint is no longer active.

spec = garchset('Display','off','P',1,'Q',1);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);

κ

κ 0>

Examples

5-31

garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049676 0.00013137 3.7813
 K 8.9128e-007 1.5776e-007 5.6495
 GARCH(1) 0.91088 0.0069142 131.7410
 ARCH(1) 0.079942 0.0058319 13.7077

summary

summary =
 warning: 'No Warnings'
 converge: 'Function Converged to a Solution'
 constraints: 'No Boundary Constraints'
 covMatrix: [4x4 double]
 iterations: 21
 functionCalls: 208
 lambda: [1x1 struct]

[summary.lambda.lower summary.lambda.upper]

ans =
 0 0
 0 0
 0 0
 0 0

Determining Convergence Status
There are two ways to determine whether an estimation achieves convergence.
The first, and easiest, is to examine the optimization details of the estimation.

5 Estimation

5-32

By default, garchfit displays this information in the MATLAB Command
Window. The second way to determine convergence status is to request the
garchfit optional summary output.

To illustrate these methods, use the DEM2GBP (Deutschmark/British pound
foreign exchange rate) data.

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(dem2gbp);

%%%
 Diagnostic Information

Number of variables: 4

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or Quasi-Newton)
 Nonlinear constraints: armanlc
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 4
 Number of upper bound constraints: 4

Algorithm selected
 medium-scale

%%%
 End diagnostic information

 max Directional First-order
Iter F-count f(x) constraint Step-size derivative Optimality Procedure
 1 28 -7916.01 -2.01e-006 7.63e-006 857 1.42e+005
 2 36 -7959.65 -1.508e-006 0.25 389 9.8e+007
 3 45 -7963.98 -3.113e-006 0.125 131 5.29e+006
 4 52 -7965.59 -1.586e-006 0.5 55.9 4.45e+007

Examples

5-33

 5 65 -7966.9 -1.574e-006 0.00781 101 1.46e+007
 6 74 -7969.46 -2.201e-006 0.125 14.9 2.77e+007
 7 83 -7973.56 -2.663e-006 0.125 36.6 1.45e+007
 8 90 -7982.09 -1.332e-006 0.5 -6.39 5.59e+006
 9 103 -7982.13 -1.399e-006 0.00781 6.49 1.32e+006
10 111 -7982.53 -1.049e-006 0.25 12.5 1.87e+007
11 120 -7982.56 -1.186e-006 0.125 3.72 3.8e+006
12 128 -7983.69 -1.11e-006 0.25 0.184 4.91e+006
13 134 -7983.91 -7.813e-007 1 0.732 1.22e+006
14 140 -7983.98 -9.265e-007 1 0.186 1.17e+006
15 146 -7984 -8.723e-007 1 0.0427 9.52e+005
16 154 -7984 -8.775e-007 0.25 0.0152 6.33e+005
17 160 -7984 -8.75e-007 1 0.00197 6.98e+005
18 166 -7984 -8.763e-007 1 0.000931 7.38e+005
19 173 -7984 -8.759e-007 0.5 0.000469 7.37e+005
20 179 -7984 -8.761e-007 1 0.00012 7.22e+005
21 199 -7984 -8.761e-007 -6.1e-005 0.0167 7.37e+005 Hessian modified twice
22 213 -7984 -8.761e-007 0.00391 0.00582 7.26e+005 Hessian modified twice
Optimization terminated successfully:
 Search direction less than 2*options.TolX and
 maximum constraint violation is less than options.TolCon
 No Active Constraints

Notice that the optimization details indicate successful termination. Now,
examine the summary output structure.

summary

summary =
 warning: 'No Warnings'
 converge: 'Function Converged to a Solution'
 constraints: 'No Boundary Constraints'
 covMatrix: [4x4 double]
 iterations: 22
 functionCalls: 213
 lambda: [1x1 struct]

The converge field indicates successful convergence. If the estimation failed to
converge, the converge field would contain the message 'Function Did NOT
Converge'. If the number of iterations or function evaluations exceeded its
specified limits, the converge field would contain the message 'Maximum
Function Evaluations or Iterations Reached'. The summary structure also
contains fields that indicate the number of iterations (iterations) and
log-likelihood function evaluations (functionCalls).

5 Estimation

5-34

6

Forecasting

Minimum Mean Square Error
Forecasting (p. 6-2)

Discusses the outputs of the forecasting engine, garchpred:
the conditional standard deviations of future innovations,
the conditional mean forecasts of the return series, the
MMSE volatility forecasts of returns, and the RMSE
associated with conditional mean forecasts.

Presample Observations (p. 6-5) Explains how garchpred generates the necessary presample
data.

Asymptotic Behavior for Long-Range
Forecast Horizons (p. 6-6)

Discusses the asymptotic behavior of the garchpred outputs
for long-range forecast horizons.

Examples (p. 6-8) Computes a forecast of the conditional mean, a volatility
forecast, and a forecast with multiple realizations.

6 Forecasting

6-2

Minimum Mean Square Error Forecasting
The forecasting engine, garchpred, computes minimum mean square error
(MMSE) forecasts of the conditional mean of returns and conditional
standard deviation of the innovations in each period over a user-specified
forecast horizon. To do this, it views the conditional mean and variance models
from a linear filtering perspective, and applies iterated conditional
expectations to the recursive equations, one forecast period at a time.

Each output of garchpred is an array with a number of rows equal to the
user-specified forecast horizon and with a number of columns the same as the
number of columns (i.e., realizations, or paths) in the time-series array of asset
returns, Series. For a general forecasting example involving multiple
realizations, see “Examples” on page 6-8.

This section discusses the four garchpred outputs:

• “Conditional Standard Deviations of Future Innovations” on page 6-2

• “Conditional Mean Forecasts of the Return Series” on page 6-3

• “MMSE Volatility Forecasts of Returns” on page 6-3

• “RMSE Associated with Conditional Mean Forecasts” on page 6-4

Conditional Standard Deviations of Future
Innovations
The first output of garchpred, SigmaForecast, is a matrix of conditional
standard deviations of future innovations (i.e., residuals) on a per-period basis.
This matrix represents the standard deviations derived from the MMSE
forecasts associated with the recursive volatility model you defined in the
GARCH specification structure.

For GARCH(P,Q) and GJR(P,Q) models, SigmaForecast is the square root of
the MMSE conditional variance forecasts. For EGARCH(P,Q) models,
SigmaForecast is the square root of the exponential of the MMSE forecasts of
the logarithm of conditional variance.

Since the forecasts are computed iteratively, the first row contains the
standard deviation in the first forecast period for each realization of Series,
the second row contains the standard deviation in the second forecast period,
and so on. Thus, if you specify a forecast horizon greater than one, the
per-period standard deviations of all intermediate horizons are returned as

yt{ }
εt{ }

Minimum Mean Square Error Forecasting

6-3

well. In this case, the last row contains the standard deviation at the specified
forecast horizon for each realization of Series.

Conditional Mean Forecasts of the Return Series
The second output of garchpred, MeanForecast, is a matrix of MMSE forecasts
of the conditional mean of Series on a per-period basis. Again, the first row
contains the forecast for each realization of Series in the first forecast period,
the second row contains the forecast in the second forecast period, and the last
row contains the forecast of Series at the forecast horizon.

MMSE Volatility Forecasts of Returns
The third output of garchpred, SigmaTotal, is a matrix of volatility forecasts
of returns over multiperiod holding intervals. That is, the first row contains the
expected standard deviation of returns for assets held for one period for each
realization of Series, the second row contains the standard deviation of
returns for assets held for two periods, and so on. Thus, the last row contains
the forecast of the standard deviation of the cumulative return obtained if an
asset was held for the entire forecast horizon.

garchpred computes the elements of SigmaTotal by taking the square root of

(6-1)

where is the forecast horizon of interest (NumPeriods), and is the
coefficient of the jth lag of the innovations process in an infinite-order MA
representation of the conditional mean model (see the function garchma).

In the special case of the default model for the conditional mean, ,
this reduces to

The SigmaTotal forecasts are correct for continuously compounded returns,
and approximate for periodically compounded returns. SigmaTotal is the same
size as SigmaForecast if the conditional mean is modeled as a stationary
invertible ARMA process.

vart yt i+

i 1=

s

∑ 1 ψj

j 1=

s i–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

Et σt i+
2()

i 1=

s

∑=

s ψj

yt C εt+=

vart yt i+

i 1=

s

∑ Et σt i+
2()

i 1=

s

∑=

6 Forecasting

6-4

For conditional mean models with regression components (i.e., X or XF is
specified), SigmaTotal is an empty matrix, []. In other words, garchpred
computes SigmaTotal only if the conditional mean is modeled as a stationary
invertible ARMA process. See “Regression Components in Conditional Mean
Models” on page 7-1.

RMSE Associated with Conditional Mean Forecasts
The fourth output of garchpred, MeanRMSE, is a matrix of root mean square
errors (RMSE) associated with the output forecast array MeanForecast. That
is, each element of MeanRMSE is the conditional standard deviation of the
corresponding forecast error (i.e., the standard error of the forecast) in the
MeanForecast matrix. From Baillie and Bollerslev [1], Equation 19,

Using this equation and the computed MMSE forecasts of the conditional mean
(MeanForecast) and the standard errors of the corresponding forecasts
(MeanRMSE), you can construct approximate confidence intervals for conditional
mean forecasts, with the approximation becoming more accurate during
periods of relatively stable volatility (see Baillie and Bollerslev [1] and
Bollerslev, Engle, and Nelson [6]). As heteroscedasticity in returns disappears
(i.e., as the returns approach the homoscedastic, or constant variance, limit),
the approximation is exact and you can apply the Box & Jenkins confidence
bounds (see Box, Jenkins, and Reinsel [8], pages 133-145).

For conditional mean models with regression components (i.e., X or XF is
specified), MeanRMSE is an empty matrix, []. In other words, garchpred
computes MeanRMSE only if the conditional mean is modeled as a stationary
invertible ARMA process. See “Regression Components in Conditional Mean
Models” on page 7-1.

vart yt s+() ψs i–
2

Et σt i+
2

()

i 1=

s

∑=

Presample Observations

6-5

Presample Observations
As mentioned in “Minimum Mean Square Error Forecasting” on page 6-2,
garchpred computes MMSE forecasts by applying iterated conditional
expectations to the conditional mean and variance models one forecast period
at a time. Since these models are generally recursive in nature, they often
require presample data to initiate the iterative forecasting process. This initial
data plays the identical role that the presample time-series inputs
PreInnovations, PreSigmas, and PreSeries play in simulation (see garchsim)
and estimation (see garchfit and garchinfer).

Since the time-series array of asset returns, Series, is a required input,
garchpred simply takes any initial returns it needs to initiate forecasting of the
conditional mean directly from the last (i.e., most recent) rows of Series. For
example, consider a conditional mean model with an AR(R) autoregressive
component. In this case, garchpred takes the observations required to
initiate the forecast of each realization of Series directly from the last rows
of Series.

However, garchpred obtains any initial innovations and conditional standard
deviations needed to initiate forecasting of the conditional variance model from
the input array Series via the inverse filtering inference engine garchinfer.

For additional details regarding estimation and inverse filtering, see
“Maximum Likelihood Estimation” on page 5-2, “Presample Observations” on
page 5-11, and the garchinfer function.

R
R

6 Forecasting

6-6

Asymptotic Behavior for Long-Range Forecast Horizons
If you are working with long-range forecast horizons, the following asymptotic
behaviors hold for the outputs of garchpred:

• As mentioned earlier in this section, the conditional standard deviation
forecast (i.e., the first garchpred output, sigmaForecast) approaches the
unconditional standard deviation of . For GARCH(P,Q) models it is
given by

For GJR(P,Q) models, it is given by

And for EGARCH(P,Q) models, it is given by

• GARCH effects do not affect the MMSE forecast of the conditional mean
(i.e., the second garchpred output, meanForecast). The forecast approaches
the unconditional mean of {yt} as in the constant variance case. That is, the
presence of GARCH effects introduces dependence in the variance process,
and only affects the uncertainty of the mean forecast, leaving the mean
forecast itself unchanged.

• The mean square error of the conditional mean (i.e., the square of the fourth
garchpred output, meanRMSE.^2) approaches the unconditional variance
of {yt}.

• EGARCH(P,Q) models represent the logarithm of the conditional variance as
the output of a linear filter, rather than the conditional variance process

εt{ }

σ κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑–

---=

σ κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑
1
2
--- Lj

j 1=

Q

∑––

---=

σ e

κ

1 Gi

i 1=

P

∑–

=

Asymptotic Behavior for Long-Range Forecast Horizons

6-7

itself. Because of this, the MMSE forecasts derived from EGARCH(P,Q)
models are optimal for the logarithm of the conditional variance, but are
generally downward-biased forecasts of the conditional variance process
itself. Since the output arrays SigmaForecast, SigmaTotal, and MeanRMSE
are based on the conditional variance forecasts, these outputs generally
underestimate their true expected values for conditional variance forecasts
derived from EGARCH(P,Q) models. The important exception is the
one-period ahead forecast, which is unbiased in all cases. For unbiased
multiperiod forecasts of SigmaForecast, SigmaTotal, and MeanRMSE, you can
perform Monte Carlo simulation via garchsim (see “Advanced Example” on
page 9-1).

6 Forecasting

6-8

Examples
• “Computing a Forecast” on page 6-8

• “Volatility Forecasts over Multiple Periods” on page 6-11

• “Computing a Forecast with Multiple Realizations” on page 6-14

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Computing a Forecast
The section “Analysis and Estimation Example Using the Default Model” on
page 2-15 uses the default GARCH(1,1) model to model the
Deutschmark/British pound foreign exchange series. This example uses the
resulting model

to demonstrate the use of the forecasting function garchpred.

1 Use the following commands to restore your workspace if necessary. The
following text omits the display output of the estimation to save space.

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

yt 6.1919e-005– εt+=

σt
2

1.0761e-006 0.80598σt 1–
2

0.15313εt 1–
2

+ +=

Examples

6-9

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -6.1919e-005 8.4331e-005 -0.7342
 K 1.0761e-006 1.323e-007 8.1341
 GARCH(1) 0.80598 0.016561 48.6685
 ARCH(1) 0.15313 0.013974 10.9586

2 Call garchpred to forecast the returns for the Deutschmark/British pound
foreign exchange series using the default model parameter estimates.
Provide the specification structure coeff (the output of garchfit) and the
FX return series dem2gbp, and the number of forecast periods as input.

Note Example results below are displayed in Short E numeric format for
readability. Select File -> Preferences -> Command Window -> Text
display: short e before starting the example to duplicate this format.

Use the following command to forecast the conditional mean and standard
deviation in each period of a 10-period forecast horizon.

[sigmaForecast,meanForecast] = garchpred(coeff,dem2gbp,10);
[sigmaForecast,meanForecast]

ans =

 3.8340e-003 -6.1919e-005
 3.8954e-003 -6.1919e-005
 3.9535e-003 -6.1919e-005
 4.0084e-003 -6.1919e-005
 4.0603e-003 -6.1919e-005
 4.1095e-003 -6.1919e-005
 4.1562e-003 -6.1919e-005
 4.2004e-003 -6.1919e-005
 4.2424e-003 -6.1919e-005

6 Forecasting

6-10

 4.2823e-003 -6.1919e-005

The result consists of the MMSE forecasts of the conditional standard
deviations and the conditional mean of the return series dem2gbp for a
10-period default horizon. They show that the default model forecast of the
conditional mean is always C = -6.1919e-05. This is true for any forecast
horizon because the expected value of any innovation, , is 0.

The conditional standard deviation forecast (sigmaForecast) changes from
period to period and approaches the unconditional standard deviation of

, given by

3 Calculate the unconditional standard deviation of as

s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:);coeff.ARCH(:)])))
s0 =
 5.1300e-003

4 Plot the unconditional standard deviation, 5.1300e-003, and the conditional
standard deviations, sigmas, derived from the fitted returns. The plot
reveals that the most recent values of fall below this long-run,
asymptotic value.

plot(sigmas), hold('on')
plot([0 size(sigmas,1)],[s0 s0],'red')
title('Fitted Conditional Standard Deviations')
hold('off')

εt

εt{ }

σ κ

1 Gi
i 1=

P

∑– Aj
j 1=

Q

∑–

---=

εt{ }

σt

Examples

6-11

Volatility Forecasts over Multiple Periods
In addition to computing conditional mean and volatility forecasts on a
per-period basis, garchpred also computes volatility forecasts of returns for
assets held for multiple periods. For example, you could forecast the standard
deviation of the return you would obtain if you purchased shares in a mutual
fund that mirrors the performance of the New York Stock Exchange Composite
Index today, and sold it 10 days from now.

1 Use the default GARCH(1,1) model (“The Default Model” on page 2-12) to
estimate the model parameters for the NYSE data set. The following text
omits the display output of the estimation to save space.

load garchdata
nyse = price2ret(NYSE);
[coeff,errors,LLF,innovations,sigmas] = garchfit(nyse);
garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

0 500 1000 1500 2000
2

4

6

8

10

12

14
x 10

−3 Fitted Conditional Standard Deviations

6 Forecasting

6-12

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00049676 0.00013137 3.7813
 K 8.9128e-007 1.5776e-007 5.6495
 GARCH(1) 0.91088 0.0069142 131.7410
 ARCH(1) 0.079942 0.0058319 13.7077

2 Now, forecast and plot the standard deviation of the return you would obtain
if you sold the shares after 10 days.

[sigmaForecast,meanForecast,sigmaTotal] = garchpred(coeff,...
 nyse,10);
plot(sigmaTotal)
ylabel('Standard Deviations')
xlabel('Periods')
title('10-Period Volatility Forecast')
hold('off')

Examples

6-13

This plot represents the standard deviation of the returns (sigmaTotal)
expected if you held the shares for the number of periods shown on the
x-axis. The value for the tenth period is the volatility forecast of the expected
return if you purchased the shares today and held them for 10 periods.

Note that the calculation of sigmaTotal is strictly correct for continuously
compounded returns only, and is an approximation for periodically
compounded returns.

3 If you convert the standard deviations sigmaForecast and sigmaTotal to
variances by squaring each element, you can see an interesting relationship
between the cumulative sum of sigmaForecast.^2 and sigmaTotal.^2.

format short e
[cumsum(sigmaForecast.^2) sigmaTotal.^2]

ans =

 5.4587e-005 5.4587e-005
 1.0956e-004 1.0956e-004
 1.6493e-004 1.6493e-004

1 2 3 4 5 6 7 8 9 10
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

S
ta

nd
ar

d
D

ev
ia

tio
ns

Periods

10−Period Volatility Forecast

6 Forecasting

6-14

 2.2068e-004 2.2068e-004
 2.7680e-004 2.7680e-004
 3.3331e-004 3.3331e-004
 3.9018e-004 3.9018e-004
 4.4743e-004 4.4743e-004
 5.0504e-004 5.0504e-004
 5.6302e-004 5.6302e-004

Although not exactly equivalent, this relationship in the presence of
heteroscedasticity is similar to the familiar square-root-of-time rule for
converting constant variances of uncorrelated returns expressed on a
per-period basis to a variance over multiple periods. This relationship
between sigmaForecast and sigmaTotal holds for the default conditional
mean model only (i.e., the relationship is valid for uncorrelated returns).

Computing a Forecast with Multiple Realizations
This example illustrates how to forecast multiple realizations of an MA(1)
conditional mean model with an EGARCH(1,1) conditional variance model.

1 Load the NYSE data set and convert prices to returns.

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure template, and estimate and display the
estimation results,

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1,...
 'Display','off');
[coeff,errors] = garchfit(spec,nyse);
garchdisp(coeff,errors)

 Mean: ARMAX(0,1,0); Variance: EGARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

Examples

6-15

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00022434 0.00014038 1.5981
 MA(1) 0.10677 0.018795 5.6806
 K -0.25399 0.031452 -8.0755
 GARCH(1) 0.97329 0.003231 301.2365
 ARCH(1) 0.14514 0.011845 12.2533
 Leverage(1) -0.10359 0.0081483 -12.7128

3 Based on the estimation results, simulate 1000 observations for each of
three independent realizations and forecast the conditional standard
deviations and returns for a 10-period forecast horizon,

[innovations,sigmas,series] = garchsim(coeff,1000,3);
[sigmaForecast,meanForecast] = garchpred(coeff,series,10);

Examination of the MATLAB workspace reveals that both sigmaForecast
and meanForecast outputs are 10-by-3 arrays. Both arrays have the same
number of rows as the specified number of periods. The first row contains
the standard deviations and mean forecasts for the first period, and the last
row contains these values for the most recent period. Both arrays have the
same number of columns as there are realizations, i.e., columns, in the
simulated return series, series.

6 Forecasting

6-16

7
Regression Components in
Conditional Mean Models

Introduction (p. 7-2) Introduces the concept of a regression component in the
conditional mean model.

Incorporating a Regression Model in
an Estimation (p. 7-3)

Shows you how to perform an estimation when the
conditional mean model includes a regression component.

Simulation and Inference Using a
Regression Component (p. 7-9)

Explains the syntax for including a matrix of explanatory
data, i.e., a regression matrix, in calls to garchsim and
garchinfer.

Forecasting Using a Regression
Component (p. 7-10)

Discusses the need for both explanatory and forecast
explanatory data when you incorporate a regression
component in a forecast.

Regression in a Monte Carlo
Framework (p. 7-14)

Considers Monte Carlo simulation that includes a regression
component.

7 Regression Components in Conditional Mean Models

7-2

Introduction
The GARCH Toolbox allows conditional mean models with regression
components, i.e., of general ARMAX(R,M,Nx) form.

with regression coefficients , and explanatory regression matrix in which
each column is a time series and denotes the th row and th column.

Conditional mean models with a regression component introduce additional
complexity in the sense that the toolbox functions have no way of knowing what
the explanatory data represents or how it was generated. This is in contrast to
ARMA models, which have an explicit forecasting mechanism and well-defined
stationarity/invertibility requirements.

All the primary functions (i.e., garchfit, garchinfer, garchpred, and
garchsim) accept an optional regression matrix, X, that represents X in the
equation above. You must ensure that the regression matrix you provide is
valid and you must

• Collect and format the past history of explanatory data you include in X.

• For forecasting, forecast X into the future to form XF.

yt C φiyt i–
i 1=

R

∑ εt θjεt j–

j 1=

M

∑ βkX t k,()
k 1=

Nx

∑+ + + +=

βk X
X t k,() t k

Incorporating a Regression Model in an Estimation

7-3

Incorporating a Regression Model in an Estimation
This section uses the asymptotic equivalence of autoregressive models and
linear regression models to illustrate the use of a regression component. The
example has two parts:

• “Fitting a Model to a Simulated Return Series” on page 7-3

• “Fitting a Regression Model to the Same Return Series” on page 7-5

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

Fitting a Model to a Simulated Return Series
This section uses an AR(R)/GARCH(P,Q) model to fit a simulated return series
to the defined model.

1 Define an AR(2)/GARCH(1,1) model. Start by creating a specification
structure for an AR(2)/GARCH(1,1) composite model. Set the 'Display'
parameter 'off' to suppress the optimization details that garchfit
normally displays.

spec = garchset('AR',[0.5 -0.8],'C',0,'Regress',[0.5 -0.8],...
 'GARCH',0.7,'ARCH',0.1,'K',0.005,...
 'Display','off')

spec =
 Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 R: 2
 C: 0
 AR: [0.5000 -0.8000]
 Regress: [0.5000 -0.8000]

7 Regression Components in Conditional Mean Models

7-4

 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 0.0050
 GARCH: 0.7000
 ARCH: 0.1000
 Display: 'off'

Notice that in this specification structure, spec

- The model order fields R, M, P, and Q are consistent with the number of
coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.

- Although the Regress field indicates two regression coefficients, the
Comment field still contains a question mark as a placeholder for the
number of explanatory variables.

- There is no model order field for the Regress vector, analogous to the R, M,
P, and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

2 Fit the model to a simulated return series. Simulate 2000 observations of
the innovations, conditional standard deviations, and returns for the
AR(2)/GARCH(1,1) process defined in spec. Use the model defined in spec
to estimate the parameters of the simulated return series and then compare
the parameter estimates to the original coefficients in spec.

[e,s,y] = garchsim(spec,2000,1,0);
[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

 Mean: ARMAX(2,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -0.00044755 0.0034623 -0.1293
 AR(1) 0.50257 0.01392 36.1049
 AR(2) -0.8002 0.013981 -57.2344
 K 0.0050532 0.001971 2.5637

Incorporating a Regression Model in an Estimation

7-5

 GARCH(1) 0.70954 0.095319 7.4439
 ARCH(1) 0.083296 0.022665 3.6752

The estimated parameters, shown in the Value column, are quite close to the
true coefficients in spec.

Because you specified no explanatory regression matrix as input to
garchsim and garchfit, these functions ignore the regression coefficients
(Regress). The garchdisp output shows a 0 for the order of the regression
component.

Fitting a Regression Model to the Same Return
Series
To illustrate the use of a regression matrix, fit the return series y, an AR(2)
process in the mean, to a regression model with two explanatory variables. The
regression matrix consists of the first- and second-order lags of the simulated
return series y. The return series y was simulated in the previous topic,
“Fitting a Model to a Simulated Return Series” on page 7-3.

1 Remove the AR component. First, remove the AR component from the
specification structure.

spec = garchset(spec,'R',0,'AR',[])
spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: 0
 Regress: [0.5000 -0.8000]
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 0.0050
 GARCH: 0.7000
 ARCH: 0.1000
 Display: 'off'

2 Create the regression matrix. Create a regression matrix of first- and
second-order lags using the simulated returns vector y from “Fitting a Model
to a Simulated Return Series” on page 7-3 as input. Examine the first 10
rows of y and the corresponding rows of the lags.

7 Regression Components in Conditional Mean Models

7-6

X = lagmatrix(y,[1 2]);
[y(1:10) X(1:10,:)]
ans =
 0.0562 NaN NaN
 0.0183 0.0562 NaN
 -0.0024 0.0183 0.0562
 -0.1506 -0.0024 0.0183
 -0.3937 -0.1506 -0.0024
 -0.0867 -0.3937 -0.1506
 0.1075 -0.0867 -0.3937
 0.2225 0.1075 -0.0867
 0.1044 0.2225 0.1075
 0.1288 0.1044 0.2225

3 Examine the regression matrix. A NaN (an IEEE arithmetic standard for
Not-a-Number) in the resulting matrix X indicates the presence of a missing
observation. If you use X to fit a regression model to y, garchfit produces an
error.

[coeff,errors] = garchfit(spec,y,X);
??? Error using ==> garchfit
 Regression matrix 'X' has insufficient number of observations.

The error occurs because there are fewer valid rows (i.e., those rows without
a NaN) in the regression matrix X than there are observations in y. The
returns vector y has 2000 observations but the most recent number of valid
observations in X is only 1998.

4 Repair the regression matrix. You can do one of two things in order to
proceed. For a return series of this size it makes little difference which
option you choose:

- Strip off the first two observations in y.

- Replace all NaNs in X with some reasonable value.

This example continues by replacing all NaNs with the sample mean of y. Use
the MATLAB function isnan to identify NaNs and the function mean to
compute the mean of y.

X(isnan(X)) = mean(y);
[y(1:10), X(1:10,:)]

Incorporating a Regression Model in an Estimation

7-7

ans =
 0.0562 0.0004 0.0004
 0.0183 0.0562 0.0004
 -0.0024 0.0183 0.0562
 -0.1506 -0.0024 0.0183
 -0.3937 -0.1506 -0.0024
 -0.0867 -0.3937 -0.1506
 0.1075 -0.0867 -0.3937
 0.2225 0.1075 -0.0867
 0.1044 0.2225 0.1075
 0.1288 0.1044 0.2225

Note If the number of valid rows in X exceeds the number of observations
in y, then garchfit includes in the estimation only the most recent rows of X,
equal to the number of observations in y.

5 Fit the regression model. Now that the explanatory regression matrix X is
compatible with the return series vector y, use garchfit to estimate the
model coefficients for the return series using the regression matrix, and
display the results.

[coeffX,errorsX] = garchfit(spec,y,X);
garchdisp(coeffX,errorsX)

 Mean: ARMAX(0,0,2); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -0.00044754 0.0034628 -0.1292
 Regress(1) 0.50257 0.01392 36.1048
 Regress(2) -0.8002 0.013981 -57.2346
 K 0.0050526 0.0019708 2.5637
 GARCH(1) 0.70957 0.095311 7.4447

7 Regression Components in Conditional Mean Models

7-8

 ARCH(1) 0.083292 0.022663 3.6752

These estimation results are similar to those shown for the AR model in the
section “Fitting a Model to a Simulated Return Series” on page 7-3. This
similarity illustrates the asymptotic equivalence of autoregressive models
and linear regression models.

By illustrating the extra steps involved in formatting the explanatory
matrix, this part of the example also highlights the additional complexity
involved in modeling conditional means with regression components.

Simulation and Inference Using a Regression Component

7-9

Simulation and Inference Using a Regression Component
Including a regression component with garchsim and garchinfer is similar to
including one with garchfit. (See “Incorporating a Regression Model in an
Estimation” on page 7-3.)

For example, the following command simulates a single realization of 2000
observations of the innovations, conditional standard deviations, and returns.

[e,s,y] = garchsim(spec,2000,1,[],X);

You can also use the same regression matrix X to infer the innovations and
conditional standard deviations from the returns.

[eInfer,sInfer] = garchinfer(spec,y,X);

7 Regression Components in Conditional Mean Models

7-10

Forecasting Using a Regression Component
Inclusion of a regression component in forecasting is also similar to including
one in an estimation. However, in addition to the explanatory data, you must
consider the use of forecasted explanatory data.

This section discusses

• “Forecasted Explanatory Data” on page 7-10

• “Generating Forecasted Explanatory Data” on page 7-11

• “Ordinary Least Squares Regression” on page 7-12

Forecasted Explanatory Data
If you want to forecast the conditional mean of a return series y in each period
of a 10-period forecast horizon, the correct calling syntax for garchpred is

NumPeriods = 10;
[sigmaForecast,meanForecast] = ...
 garchpred(spec,y,NumPeriods,X,XF);

where X is the same regression matrix shown in “Fitting a Regression Model to
the Same Return Series” on page 7-5, and XF is a regression matrix of
forecasted explanatory data. In fact, XF represents a projection into the future
of the explanatory data in X. Note that the command above produces an error
if you execute it in your current workspace because XF is missing.

XF must have the same number of columns as X. In each column of XF, the first
row contains the one-period-ahead forecast, the second row the
two-period-ahead forecast, and so on. If you specify XF, the number of rows
(forecasts) in each column must equal or exceed the forecast horizon,
NumPeriods. When the number of forecasts in XF exceeds the forecast horizon,
garchpred uses only the first NumPeriods forecasts. If XF is empty ([]) or
missing, the conditional mean forecast, meanForecast, has no regression
component.

If you used a regression matrix, X, for simulation and/or estimation, then you
should also use a regression matrix when calling garchpred. This is because
garchpred requires a complete conditional mean specification to correctly infer
the innovations from the observed return series . Typically, the same
regression matrix is used for simulation, estimation, and forecasting.

εt{ } yt{ }

Forecasting Using a Regression Component

7-11

Forecasting Only the Conditional Standard Deviation
To forecast the conditional standard deviation (i.e., sigmaForecast), XF is
unnecessary, and garchpred ignores it if it is present. This is true even if you
included the matrix X in the simulation and/or estimation process.

For example, you could use the following syntax to forecast only the conditional
standard deviation of the innovations over a 10-period forecast horizon.

sigmaForecast = garchpred(spec,y,10,X);

Forecasting the Conditional Mean
To forecast the conditional mean (i.e., meanForecast), if you specify X, you must
also specify XF.

For example, to forecast the conditional mean of the return series y over a
10-period forecast horizon,

[sigmaForecast,meanForecast] = garchpred(spec,y,10,X,XF);

Generating Forecasted Explanatory Data
Typically, the regression matrix X contains the observed returns of a suitable
market index, collected over the same time interval as the observed data of
interest. In this case, X is most likely a vector, corresponding to a single
explanatory variable, and you must devise some way of generating the forecast
of X (i.e., XF).

One approach, using the GARCH Toolbox, is to first use garchfit to fit a
suitable ARMA(R,M) model to the returns in X, then use garchpred to forecast
the market index returns into the future. Specifically, since you’re not
interested in fitting the volatility of X, you can simplify the estimation process
by assuming a constant conditional variance model, e.g.,
ARMA(R,M)/GARCH(0,0).

εt{ }

7 Regression Components in Conditional Mean Models

7-12

Ordinary Least Squares Regression
The following example illustrates an ordinary least squares regression by
simulating a return series that scales the daily return values of the New York
Stock Exchange Composite Index. It also provides an example of a constant
conditional variance model.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

1 Load the NYSE data set and convert the price series to a return series.

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure. Set the Display flag to 'off' to suppress
the optimization details that garchfit normally displays.

spec = garchset('P',0,'Q',0,'C',0,'Regress',1.2,'K',0.00015,...
 'Display', 'off')

spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(0,0)'
 Distribution: 'Gaussian'
 C: 0
 Regress: 1.2000
 VarianceModel: 'GARCH'
 K: 1.5000e-004
 Display: 'off'

3 Simulate a single realization of 2000 observations, fit the model, and
examine the results.

[e,s,y] = garchsim(spec,2000,1,0,nyse);
[coeff,errors] = garchfit(spec,y,nyse);

Ordinary Least Squares Regression

7-13

garchdisp(coeff,errors)

 Mean: ARMAX(0,0,1); Variance: GARCH(0,0)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 3

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 4.9091e-006 0.00027114 0.0181
 Regress(1) 1.2251 0.028909 42.3786
 K 0.00014662 4.6945e-006 31.2334

These estimation results are just the ordinary least squares (OLS)
regression results. In fact, in the absence of GARCH effects and assuming
Gaussian innovations, maximum likelihood estimation and least squares
regression are the same thing.

Note This example is shown purely for illustration purposes. Although you
can use the GARCH Toolbox to perform OLS, it is computationally inefficient
and is not recommended.

7 Regression Components in Conditional Mean Models

7-14

Regression in a Monte Carlo Framework
In the general case, the functions garchsim, garchinfer, and garchpred
process multiple realizations (i.e., sample paths) of univariate time series. That
is, the outputs of garchsim, as well as the observed return series input to
garchpred and garchinfer, can be time-series matrices in which each column
represents an independent realization. garchfit is different, in that the input
observed return series of interest must be a vector (i.e., a single realization).

When simulating, inferring, and forecasting multiple realizations, the
appropriate toolbox function applies a given regression matrix X to each
realization of a univariate time series. For example, in the following command,
garchsim applies a given X matrix to all 10 columns of the output series ,

, and .

NumSamples = 100;
NumPaths = 10;
[e,s,y] = garchsim(spec,NumSamples,NumPaths,[],X);

In a true Monte Carlo simulation of this process, including a regression
component, you would call garchsim inside a loop 10 times, once for each path.
Each iteration would pass in a unique realization of X and produce a
single-column output.

εt{ }
σt{ } yt{ }

8
Model Selection and
Analysis

See “Analysis and Estimation Example Using the Default Model” on page 2-15 for information about
using the autocorrelation and partial autocorrelation functions as qualitative guides in the process of
model selection and assessment. This example also introduces the Ljung-Box-Pierce Q-test and
Engle's ARCH test functions.

Likelihood Ratio Tests (p. 8-2) Uses likelihood ratio tests to determine if evidence exists to
support the use of a specific GARCH model.

Akaike and Bayesian Information
Criteria (p. 8-5)

Uses Akaike (AIC) and Bayesian (BIC) information criteria
to compare alternative models.

Equality Constraints and Parameter
Significance (p. 8-7)

Sets and constrains model parameters as a way of assessing
the parameters’ significance.

Equality Constraints and Initial
Parameter Estimates (p. 8-12)

Demonstrates the need for a complete model specification
when you specify equality constraints. It also provides tips
for using equality constraints.

Simplicity and Parsimony (p. 8-15) Explains why you should use the smallest, simplest model
that adequately describes your data.

8 Model Selection and Analysis

8-2

Likelihood Ratio Tests
The section “Analysis and Estimation Example Using the Default Model” on
page 2-15 demonstrates that the default GARCH(1,1) model explains most of
the variability of the daily returns observations of the Deutschemark/British
Pound foreign exchange rate. This example uses the function lratiotest to
determine whether evidence exists to support the use of a GARCH(2,1) model.

The example first fits the Deutschmark/British Pound foreign exchange rate
return series to the default GARCH(1,1) model. It then fits the same series
using the following, more elaborate, GARCH(2,1) model.

If the Deutschmark/British Pound foreign exchange rate data is not in your
workspace, you can restore it with these commands.

load garchdata
dem2gbp = price2ret(DEM2GBP);

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

1 Estimate the GARCH(1,1) model. Create a GARCH(1,1) default model
with Display set to 'off'. Then estimate the model, including the
maximized log-likelihood function value, and display the results.

spec11 = garchset('P',1,'Q',1,'Display','off');
[coeff11,errors11,LLF11] = garchfit(spec11,dem2gbp);
garchdisp(coeff11,errors11)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

yt C εt+=

σt
2 κ G1σt 1–

2
G2σt 2–

2
A1εt 1–

2
+ + +=

Likelihood Ratio Tests

8-3

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -6.1919e-005 8.4331e-005 -0.7342
 K 1.0761e-006 1.323e-007 8.1341
 GARCH(1) 0.80598 0.016561 48.6685
 ARCH(1) 0.15313 0.013974 10.9586

2 Estimate the GARCH(2,1) model. Create a GARCH(2,1) specification
structure, and again set Display to 'off'. Then estimate the GARCH(2,1)
model and display the results. Again, calculate the maximized log-likelihood
function value.

spec21 = garchset('P',2,'Q',1,'Display','off');
[coeff21,errors21,LLF21] = garchfit(spec21,dem2gbp);
garchdisp(coeff21,errors21)

 Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 5

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -5.0071e-005 8.4756e-005 -0.5908
 K 1.1196e-006 1.5358e-007 7.2904
 GARCH(1) 0.49404 0.11249 4.3918
 GARCH(2) 0.2938 0.10295 2.8537
 ARCH(1) 0.16805 0.016589 10.1305

3 Perform the likelihood ratio test. Of the two models associated with the
same return series,

- The default GARCH(1,1) model is a restricted model. That is, you can
interpret a GARCH(1,1) model as a GARCH(2,1) model with the
restriction that . G2 0=

8 Model Selection and Analysis

8-4

- The more elaborate GARCH(2,1) model is an unrestricted model.

Since garchfit enforces no boundary constraints during either of the two
estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [18],
pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the
alternative hypothesis (i.e., the hypothesis the example gathers evidence to
support), while the restricted GARCH(1,1) model serves as the null
hypothesis (i.e., the hypothesis the example assumes is true, lacking any
evidence to support the alternative).

The LRT statistic is asymptotically chi-square distributed with degrees of
freedom equal to the number of restrictions imposed. Since the GARCH(1,1)
model imposes one restriction, specify one degrees of freedom in your call to
lratiotest. Test the models at the 0.05 significance level.

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,1,0.05);
[H,pValue,Stat,CriticalValue]

ans =
 1.0000 0.0218 5.2624 3.8415

H = 1 indicates that there is sufficient statistical evidence in support of the
GARCH(2,1) model.

Alternatively, at the 0.02 significance level,

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,1,0.02);
[H,pValue,Stat,CriticalValue]

ans =
 0 0.0218 5.2624 5.4119

H = 0 indicates that there is insufficient statistical evidence in support of the
GARCH(2,1) model.

Akaike and Bayesian Information Criteria

8-5

Akaike and Bayesian Information Criteria
You can also use Akaike (AIC) and Bayesian (BIC) information criteria to
compare alternative models. Since information criteria penalize models with
additional parameters, the AIC and BIC model order selection criteria are
based on parsimony (see Box, Jenkins, and Reinsel [8], pages 200-201).

The following example uses the default GARCH(1,1) and GARCH(2,1) models
developed in the previous section, “Likelihood Ratio Tests” on page 8-2.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

1 Count the estimated parameters. For both AIC and BIC, you need to
provide the number of parameters estimated in the model. For the relatively
simple models in the previous example, you can just count the number of
parameters. The GARCH(2,1) model estimated five parameters,

, and the GARCH(1,1) model estimated four
parameters, .

Use the function garchcount for more elaborate models. garchcount accepts
the output specification structure created by garchfit and returns the
number of parameters in the model defined in that structure.

n21 = garchcount(coeff21)

n21 =
 5

n11 = garchcount(coeff11)

n11 =
 4

C κ G1 G2 and A1, , , ,
C κ G1 and A1, , ,

8 Model Selection and Analysis

8-6

2 Compute the AIC and BIC criteria. Use the function aicbic to compute
the AIC and BIC statistics for the GARCH(2,1) model and the GARCH(1,1)
model. Note that for the BIC statistic, you must also specify the number of
observations in the return series. Set the numeric format to long, to see the
results more precisely.

format long
[AIC,BIC] = aicbic(LLF21,n21,1974);
[AIC BIC]

ans =
 1.0e+004 *

 -1.59632585502853 -1.59353194641854

[AIC,BIC] = aicbic(LLF11,n11,1974);
[AIC BIC]

ans =
 1.0e+004 *

 -1.59599961321328 -1.59376448632528

You can use the relative values of the AIC and BIC statistics as guides in the
model selection process. In this example, the AIC criterion favors the
GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1) default
model with fewer parameters. Notice that since BIC imposes a greater penalty
for additional parameters than does AIC, BIC always provides a model with a
number of parameters no greater than that chosen by AIC.

Note You can also set the numeric format by selecting File -> Preferences ->
Command Window -> Text display from the MATLAB desktop.

Equality Constraints and Parameter Significance

8-7

Equality Constraints and Parameter Significance
The GARCH Toolbox lets you set and constrain model parameters as a way of
assessing the parameters’ significance.

This section discusses

• “The Specification Structure Fix Fields” on page 8-7

• “The GARCH(2,1) Model as an Example” on page 8-8

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

The Specification Structure Fix Fields
Each of the coefficient fields C, AR, MA, Regress, K, GARCH, ARCH, Leverage, and
DoF in the specification structure has a corresponding logical field that lets you
hold any individual parameter fixed. These fix fields are FixC, FixAR, FixMA,
FixRegress, FixK, FixGARCH, FixARCH, FixLeverage, and FixDoF.

For example, fit the Nasdaq returns series to the default GARCH(1,1) model.
If the Nasdaq data is not already in your workspace, you can restore it with
these commands.

load garchdata
nasdaq = price2ret(NASDAQ);

spec11 = garchset('P',1,'Q',1,'Display','off');
[coeff11,errors11,LLF11] = garchfit(spec11,nasdaq);
garchdisp(coeff11,errors11)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian

8 Model Selection and Analysis

8-8

Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00085852 0.00018353 4.6778
 K 2.2595e-006 3.3806e-007 6.6836
 GARCH(1) 0.87513 0.0089892 97.3531
 ARCH(1) 0.11635 0.0085331 13.6348

Since the estimated model has no equality constraints, all the fixed fields are
implicitly empty. For example,

garchget(coeff11,'FixGARCH')
ans =
 []

Each fix field, when not empty ([]), is the same size as the corresponding
coefficient field. A 0 in a particular element of a fix field indicates that the
corresponding element of its companion value field is an initial parameter
guess that garchfit refines during the estimation process. A 1 indicates that
garchfit holds the corresponding element of its value field fixed during the
estimation process (i.e., an equality constraint).

Note To remove the constant from the conditional mean model, i.e., to fix
C = 0 without providing initial parameter estimates for the remaining
parameters, set C = NaN (Not-a-Number). In this case, the value of FixC has
no effect.

The GARCH(2,1) Model as an Example
This example compares the estimation results for the default GARCH(1,1)
model with those obtained from fitting a GARCH(2,1) model to the Nasdaq
returns. (See “Data Sets” on page 1-11.)

Use these commands to restore your workspace if necessary.

load garchdata
nasdaq = price2ret(NASDAQ);

C

Equality Constraints and Parameter Significance

8-9

1 Estimate the model parameters and display the results.

spec21 = garchset('P',2,'Q',1,'Display','off');
[coeff21,errors21,LLF21] = garchfit(spec21,nasdaq);
garchdisp(coeff21,errors21)

Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 5

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00086237 0.00018378 4.6925
 K 2.3016e-006 4.7519e-007 4.8436
 GARCH(1) 0.83571 0.18533 4.5092
 GARCH(2) 0.036149 0.16562 0.2183
 ARCH(1) 0.1195 0.020346 5.8734

The T Statistic column is the parameter value divided by the standard
error, and is normally distributed for large samples. The T-statistic
measures the number of standard deviations the parameter estimate is
away from zero, and, as a general rule, a T-statistic greater than 2 in
magnitude corresponds to approximately a 95 percent confidence interval.
The T-statistics in the table above imply that the GARCH(2) parameter adds
little if any explanatory power to the model.

2 Assess significance of the GARCH(2) parameter. Begin by constraining
the GARCH(2) parameter at 0.

specG2 = garchset(coeff21,'GARCH',[0.8 0],'FixGARCH',[0 1]);

Using the specG2 structure, garchfit holds GARCH(2) fixed at 0, and refines
GARCH(1) from an initial value of 0.8 during the estimation process. In other
words, the specG2 specification structure tests the composite model

yt C εt+=

8 Model Selection and Analysis

8-10

which is mathematically equivalent to the default GARCH(1,1) model.

Now estimate the model subject to the equality constraint and display the
results.

[coeffG2,errorsG2,LLFG2] = garchfit(specG2,nasdaq);
garchdisp(coeffG2,errorsG2)

 Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00085827 0.00018353 4.6766
 K 2.2574e-006 3.3785e-007 6.6818
 GARCH(1) 0.87518 0.0089856 97.3979
 GARCH(2) 0 Fixed Fixed
 ARCH(1) 0.11631 0.0085298 13.6357

Notice that the standard error and T-statistic columns for the second
GARCH parameter indicate that garchfit held the GARCH(2) parameter
fixed. The number of estimated parameters also decreased from 5 in the
original, unrestricted GARCH(2,1) model to 4 in this restricted GARCH(2,1)
model. Also notice that the results are virtually identical to those obtained
from the GARCH(1,1) model in step 1.

Apply the likelihood ratio test as before.

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLFG2,1, 0.05);
[H pValue Stat CriticalValue]

ans =

σt
2 κ G1σt 1–

2
0σt 2–

2
A1εt 1–

2
+ + +=

Equality Constraints and Parameter Significance

8-11

 0 0.7835 0.0755 3.8415

As expected, since the two models are virtually identical, the results support
acceptance of the simpler restricted model, which is essentially just the
default GARCH(1,1) model.

8 Model Selection and Analysis

8-12

Equality Constraints and Initial Parameter Estimates
This section highlights some important points regarding equality constraints
and initial parameter estimates in the GARCH Toolbox. It discusses

• “Complete Model Specification” on page 8-12

• “Empty Fix Fields” on page 8-13

• “Limiting Use of Equality Constraints” on page 8-14

Note See “The Specification Structure Fix Fields” on page 8-7 for
information about using the specification structure fix fields to set equality
constraints.

Complete Model Specification
To set equality constraints during estimation, you must provide a complete
model specification; i.e., the specification must include initial parameter
estimates consistent with the model orders. The only flexibility in this regard
is that you can specify the model for either the conditional mean or the
conditional variance, without specifying the other.

The following example demonstrates an attempt to set equality constraints for
an incomplete conditional mean model and a complete variance model. Create
an ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and
variance models, respectively.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,'FixAR',1,...
 'P',1,'Q',1,'K',0.0005,'GARCH',0.8,...
 'ARCH',0.1,'FixGARCH',1)
spec =

 Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 R: 1
 M: 1
 C: 0
 AR: 0.5000
 MA: []

Equality Constraints and Initial Parameter Estimates

8-13

 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: 5.0000e-004
 GARCH: 0.8000
 ARCH: 0.1000
 FixAR: 1
 FixGARCH: 1

The conditional mean model is incomplete because the MA field is still empty.
Since the requested ARMA(1,1) model is an incomplete conditional mean
specification, garchfit ignores the C, AR, and FixAR fields, computes initial
parameter estimates, and overwrites any existing parameters in the
incomplete conditional mean specification. It also estimates all conditional
mean parameters (i.e., C, AR, and MA) and ignores the request to constrain the
AR parameter.

However, since the structure explicitly sets all fields in the conditional
variance model, garchfit uses the specified values of K and ARCH as initial
estimates subject to further refinement, and holds the GARCH parameter at 0.8
throughout the optimization process.

Empty Fix Fields
Any fix field that you leave empty, ([]), is equivalent to a vector of zeros of
compatible length. That is, when garchfit encounters an empty fix field, it
automatically estimates the corresponding parameter. For example, the
following specification structures produce the same GARCH(1,1) estimation
results.

spec1 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1,...
 'FixGARCH',0,'FixARCH',0)

spec2 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1)

Note To remove the constant from the conditional mean model, i.e., to fix
C = 0 without providing initial parameter estimates for the remaining
parameters, use garchset to set C = NaN (Not-a-Number). In this case, the
value of FixC is ignored.

C

8 Model Selection and Analysis

8-14

Limiting Use of Equality Constraints
Although the ability to set equality constraints is both convenient and useful,
equality constraints complicate the estimation process. For this reason, you
should avoid setting several equality constraints simultaneously. For example,
if you really want to estimate a GARCH(1,1) model, then specify a GARCH(1,1)
model instead of a more elaborate model with numerous constraints.

Simplicity and Parsimony

8-15

Simplicity and Parsimony
As a general rule, you should specify the smallest, simplest models that
adequately describe your data. This is especially relevant for estimation.
Simple models are easier to estimate, easier to forecast, and easier to analyze.
In fact, certain model selection criteria, such as AIC and BIC discussed in the
section “Model Selection and Analysis” on page 8-1, penalize models for their
complexity.

It makes sense to use diagnostic tools such as autocorrelation function (ACF)
and partial autocorrelation function (PACF) to guide model selection. For
example, the section “Analysis and Estimation Example Using the Default
Model” on page 2-15 examines the ACF and PACF of the Deutschmark/British
Pound foreign exchange rate (see “Data Sets” on page 1-11). The results
support the use of a simple constant for the conditional mean model as
adequate to describe the data.

The following example illustrates an unnecessarily complicated model
specification. It simulates a returns series as a pure GARCH(1,1) innovations
process (i.e., the default model), then attempts to overfit an
ARMA(1,1)/GARCH(1,1) composite model to the data.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

1 Create a specification structure for the innovations process and simulate the
returns.

spec = garchset('C',0,'K',0.00005,'GARCH',0.85,'ARCH',0.1,...
 'Display','off');
[e,s,y] = garchsim(spec,5000,1,0);

2 Fit the default model to the known GARCH(1,1) innovations process and
display the estimation results.

8 Model Selection and Analysis

8-16

[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -5.8129e-005 0.0004096 -0.1419
 K 4.6408e-005 8.3396e-006 5.5648
 GARCH(1) 0.85994 0.014612 58.8515
 ARCH(1) 0.095354 0.0097535 9.7765

These estimation results indicate that the model that best fits the observed
data is approximately

3 Continue by fitting the known GARCH(1,1) innovations process to an
ARMA(1,1) mean model and display the estimation results.

spec11 = garchset(spec,'R',1,'M',1);
[coeff11,errors11] = garchfit(spec11,y);
garchdisp(coeff11,errors11)

 Mean: ARMAX(1,1,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 6

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -7.1366e-005 0.00052468 -0.1360
 AR(1) -0.24509 0.32706 -0.7494

yt 5.8129e-005– εt+=

σt
2

4.6408e 005– 0.85994σt 1–
2

0.95354εt 1–
2

+ +=

Simplicity and Parsimony

8-17

 MA(1) 0.28515 0.32362 0.8811
 K 4.6868e-005 8.4098e-006 5.5731
 GARCH(1) 0.85917 0.014733 58.3160
 ARCH(1) 0.095584 0.0097975 9.7560

4 Examine the results. Close examination of the conditional mean equation
reveals that the AR(1) and MA(1) parameters are quite similar. In fact, when
rewriting the mean equation in backshift (i.e., lag) operator notation, where

,

the autoregressive and moving-average polynomials come close to canceling
each other (see Box, Jenkins, and Reinsel [8], pages 263-267). This is an
example of parameter redundancy, or pole-zero cancellation, and supports
the use of the simple default model. In fact, the more elaborate ARMA(1,1)
model only complicates the analysis by requiring the estimation of two
additional parameters.

Byt yt 1–=

1 0.24509B+()yt 7.1366e-005– 1 0.28515B+()εt+=

8 Model Selection and Analysis

8-18

9

Advanced Example

Estimating the Model (p. 9-2) Fits ARMA(1,1) and GJR(1,1) models to the conditional
mean and variance processes, respectively, of the Nasdaq
return series, assuming conditionally t-distributed
residuals.

Forecasting (p. 9-4) Uses the estimated model from the first part of the
example to forecast the conditional standard deviations of
residuals, the returns, the standard deviations of
multi-period cumulative returns, and the standard errors
of the forecast of returns over multiple periods.

Monte Carlo Simulation (p. 9-6) Uses the estimated model from the first part of the
example and vector-format presample data to perform
dependent-path Monte Carlo simulation of multiple
realizations.

Comparing Forecasts with Simulation
Results (p. 9-8)

Illustrates the relationship between forecasting and
dependent-path Monte Carlo simulation by comparing and
contrasting the forecasts with their counterparts derived
from the Monte Carlo simulation.

9 Advanced Example

9-2

Estimating the Model
The first part of the example fits the Nasdaq daily returns to an
ARMA(1,1)/GJR(1,1) model with conditionally t-distributed residuals. (See
“Data Sets” on page 1-11 for more information about the Nasdaq Composite
Index data set.)

1 Load the Nasdaq data set and convert daily closing prices to daily returns.

load garchdata
nasdaq = price2ret(NASDAQ);

2 Create a specification structure for an ARMA(1,1)/GJR(1,1) model with
conditionally t-distributed residuals.

spec = garchset('VarianceModel','GJR','R',1,'M',1,'P',1,'Q',1);
spec = garchset(spec,'Display','off','Distribution','T');

Note This example is for illustration purposes only. Such an elaborate
ARMA(1,1) model is typically unwarranted, and should only be used after you
have performed a sound preestimation analysis.

Note The estimation results you obtain when you recreate examples in this
book may differ slightly from those shown in the text because of differences in
platforms (operating systems), as well as in versions of MATLAB, the
Optimization Toolbox, and supporting math libraries. These differences in the
optimization results will propagate through any subsequent examples that
use the estimation results as input. These differences, however, do not affect
the outcome of the examples.

3 Estimate the parameters of the mean and conditional variance models via
garchfit. Make sure that the example returns the estimated residuals and
conditional standard deviations inferred from the optimization process so
that they can used as presample data.

Estimating the Model

9-3

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq);

Alternatively, you could replace the above call to garchfit with the
following successive calls to garchfit and garchinfer. This is because the
estimated residuals and conditional standard deviations are also available
from the inference function garchinfer,

[coeff,errors] = garchfit(spec,nasdaq);
[eFit,sFit] = garchinfer(coeff,nasdaq);

Either approach produces the same estimation results.

garchdisp(coeff,errors)

 Mean: ARMAX(1,1,0); Variance: GJR(1,1)

 Conditional Probability Distribution: T
 Number of Model Parameters Estimated: 8

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C 0.00099709 0.00023381 4.2646
 AR(1) -0.10719 0.11571 -0.9264
 MA(1) 0.26272 0.11208 2.3441
 K 1.4684e-006 3.8716e-007 3.7927
 GARCH(1) 0.89993 0.011223 80.1855
 ARCH(1) 0.048844 0.013619 3.5863
 Leverage(1) 0.086624 0.016922 5.1189
 DoF 7.8274 0.9301 8.4157

9 Advanced Example

9-4

Forecasting
The second part of the example uses the estimated model (“Estimating the
Model” on page 9-2) to compute forecasts for the Nasdaq return series 30 days
into the future.

Set the forecast horizon to 30 days (i.e., one month), then call the forecasting
engine, garchpred, with the estimated model parameters, coeff, the Nasdaq
returns, and the forecast horizon.

horizon = 30; % Define the forecast horizon
[sigmaForecast,meanForecast,sigmaTotal,meanRMSE] = ...
 garchpred(coeff,nasdaq,horizon);

This call to garchpred returns

• Forecasts of conditional standard deviations of the residuals
(sigmaForecast)

• Forecasts of the Nasdaq returns (meanForecast)

• Forecasts of the standard deviations of the cumulative holding period
Nasdaq returns (sigmaTotal)

• Standard errors associated with forecasts of Nasdaq returns (meanRMSE)

Because the return series nasdaq is a vector, all garchpred outputs are vectors.
Because garchpred uses iterated conditional expectations to successively
update forecasts, all garchpred outputs have 30 rows. The first row stores the
1-period-ahead forecasts, the second row stores the 2-period-ahead forecasts,
and so on. Thus, the last row stores the forecasts at the 30-day horizon.

Forecasting

9-5

9 Advanced Example

9-6

Monte Carlo Simulation
The third part of the example uses the same estimated model (coeff) it used in
the second part of the example, “Forecasting” on page 9-4, to simulate 20000
realizations for the same 30-day period.

The example explicitly specifies the needed presample data. It uses the
inferred residuals (eFit) and standard deviations (sFit) from the first part of
the example, “Estimating the Model” on page 9-2, as the presample inputs
PreInnovations and PreSigmas, respectively. It uses the nasdaq return series
as the presample input PreSeries. Because all three inputs are vectors,
garchsim applies the same vector to each column of the corresponding outputs,
Innovations, Sigmas, and Series. In this context, referred to as
dependent-path simulation, all simulated sample paths share a common
conditioning set and evolve from the same set of initial conditions, thus
enabling Monte Carlo simulation of forecasts and forecast error distributions.

Note that you can specify PreInnovations, PreSigmas, and PreSeries as
matrices, where each column is a realization, or as single-column vectors. In
either case, they must have a sufficient number of rows to initiate the
simulation (see “User-Specified Presample Data” on page 4-11).

For this application of Monte Carlo simulation, the example generates a
relatively large number of realizations, or sample paths, so that it can
aggregate across realizations. Because each realization corresponds to a
column in the garchsim time-series output arrays, the output arrays are large,
with many columns.

The following code simulates 20000 paths (i.e., columns). As a result, each
time-series output that garchsim returns is an array of size
horizon-by-nPaths, or 30-by-20000. Although more realizations (e.g., 100000)
provide more accurate simulation results, you may want to decrease the
number of paths (e.g., to 10000) to avoid memory limitations.

nPaths = 20000; % Define the number of realizations.
[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths,0,[],[],...
 eFit,sFit,nasdaq);

Monte Carlo Simulation

9-7

Because garchsim needs only the last, or most recent, observation of each, the
following command produces identical results.

[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths,0,[],[],...
 eFit(end),sFit(end),nasdaq(end));

9 Advanced Example

9-8

Comparing Forecasts with Simulation Results
The fourth, and last, part of this example graphically compares the forecasts
from “Forecasting” on page 9-4 with their counterparts derived from the Monte
Carlo experiment described in “Monte Carlo Simulation” on page 9-6. The first
four figures directly compare each of the garchpred outputs, in turn, with the
corresponding statistical result obtained from simulation. The last two figures
illustrate histograms from which approximate probability density functions
and empirical confidence bounds can be computed.

Note For an EGARCH model, multi-period MMSE forecasts are generally
downward biased and underestimate their true expected values for
conditional variance forecasts. This is not true for one-period-ahead forecasts,
which are unbiased in all cases. For unbiased multi-period forecasts of
sigmaForecast, sigmaTotal, and meanRMSE, you can perform Monte Carlo
simulation via garchsim. For more information, see “Asymptotic Behavior for
Long-Range Forecast Horizons” on page 6-6.

1 Compare the first garchpred output, sigmaForecast, i.e., the conditional
standard deviations of future innovations, with its counterpart derived from
the Monte Carlo simulation.

figure
plot(sigmaForecast,'.-b')
hold('on')
grid('on')
plot(sqrt(mean(sSim.^2,2)),'.r')
title('Forecast of STD of Residuals')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')

Comparing Forecasts with Simulation Results

9-9

2 Compare the second garchpred output, meanForecast, i.e., the MMSE
forecasts of the conditional mean of the nasdaq return series, with its
counterpart derived from the Monte Carlo simulation.

figure(2)
plot(meanForecast,'.-b')
hold('on')
grid('on')
plot(mean(ySim,2),'.r')
title('Forecast of Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Return')

0 5 10 15 20 25 30
0.0163

0.0164

0.0165

0.0166

0.0167

0.0168

0.0169

0.017

0.0171
Forecast of STD of Residuals

Forecast Period

S
ta

nd
ar

d
D

ev
ia

tio
n

forecast results
simulation results

9 Advanced Example

9-10

3 Compare the third garchpred output, sigmaTotal, i.e., cumulative holding
period returns, with its counterpart derived from the Monte Carlo
simulation.

holdingPeriodReturns = log(ret2price(ySim,1));
figure(3)
plot(sigmaTotal,'.-b')
hold('on')
grid('on')
plot(std(holdingPeriodReturns(2:end,:)'),'.r')
title('Forecast of STD of Cumulative Holding Period Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Standard Deviation')

Figure 2 goes here.

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3 Forecast of Returns

Forecast Period

R
et

ur
n

forecast results
simulation results

Comparing Forecasts with Simulation Results

9-11

4 Compare the fourth garchpred output, meanRMSE, i.e. the root mean square
errors (RMSE) of the forecasted returns, with its counterpart derived from
the Monte Carlo simulation.

figure(4)
plot(meanRMSE,'.-b')
hold('on')
grid('on')
plot(std(ySim'),'.r')
title('Standard Error of Forecast of Returns')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')

0 5 10 15 20 25 30
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
Forecast of STD of Cumulative Holding Period Returns

Forecast Period

S
ta

nd
ar

d
D

ev
ia

tio
n

forecast results
simulation results

9 Advanced Example

9-12

5 Use a histogram to illustrate the distribution of the cumulative holding
period return obtained if an asset was held for the full 30-day forecast
horizon, i.e., the return obtained if you purchased a mutual fund that
mirrors the performance of the Nasdaq Composite Index today, and sold
after 30 days. Notice that this histogram is directly related to the final red
dot in step 3.

figure(5)
hist(holdingPeriodReturns(end,:),30)
grid('on')
title('Cumulative Holding Period Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')

0 5 10 15 20 25 30
0.0164

0.0166

0.0168

0.017

0.0172

0.0174

0.0176
Standard Error of Forecast of Returns

Forecast Period

S
ta

nd
ar

d
D

ev
ia

tio
n

forecast results
simulation results

Comparing Forecasts with Simulation Results

9-13

6 Use a histogram to illustrate the distribution of the single-period return at
the forecast horizon, i.e., the return of the same mutual fund the 30th day
from now. Notice that this histogram is directly related to the final red dots
in steps 2 and 4.

figure(6)
hist(ySim(end,:),30)
grid('on')
title('Simulated Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Cumulative Holding Period Returns at Forecast Horizon

Return

C
ou

nt

9 Advanced Example

9-14

Note This example is not meant to imply that such elaborate conditional
mean and variance models are required to describe typical financial time
series, nor is it meant to imply that most users will need to perform such
detailed analyses at all. Furthermore, it is not meant to imply that such a
graphical analysis even makes sense for a given model, or that this is the only
graphs that could make sense.

This example merely highlights the range of possibilities, and provides a
deeper understanding of the interaction between the simulation, forecasting,
and estimation engines, garchsim, garchpred, and garchfit, respectively.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

7000
Simulated Returns at Forecast Horizon

Return

C
ou

nt

10

Function Reference

Functions — Categorical List (p. 10-2) Lists the GARCH Toolbox functions and classes according
to their purpose.

Functions — Alphabetical List (p. 10-4) Lists the GARCH Toolbox functions and classes
alphabetically.

10 Function Reference

10-2

Functions — Categorical List
This section lists the GARCH Toolbox functions according to their purpose.

• “GARCH Modeling” on page 10-2

• “GARCH Innovations Inference” on page 10-2

• “Statistics and Tests” on page 10-2

• “GARCH Specification Structure Interface Functions” on page 10-3

• “Helpers and Utilities” on page 10-3

• “Graphics” on page 10-3

GARCH Modeling

GARCH Innovations Inference

Statistics and Tests

garchfit Univariate GARCH process parameter estimation.

garchpred Univariate GARCH process forecasting.

garchsim Univariate GARCH process simulation.

garchinfer Inverse filter to infer GARCH innovations and conditional
standard deviations from an observed return series.

aicbic Akaike and Bayesian information criteria for model order
selection.

archtest Engle’s hypothesis test for the presence of ARCH/GARCH
effects.

autocorr Plot or return computed sample autocorrelation function.

crosscorr Plot or return computed sample crosscorrelation function.

lbqtest Ljung-Box Q-statistic lack-of-fit hypothesis test.

Functions — Categorical List

10-3

GARCH Specification Structure Interface Functions

Helpers and Utilities

Graphics

lratiotest Likelihood ratio hypothesis test.

parcorr Plot or return computed sample partial autocorrelation
function.

garchget Retrieve a GARCH specification structure parameter.

garchset Create or modify a GARCH specification structure.

garchar Convert finite-order ARMA models to infinite-order AR
models.

garchcount Count GARCH estimation coefficients.

garchdisp Display GARCH process estimation results.

garchma Convert finite-order ARMA models to infinite-order MA
models.

lagmatrix Create a lagged time-series matrix.

price2ret Convert price series to a return series.

ret2price Convert return series to a price series.

garchplot Plot matched univariate innovations, volatility, and return
series.

10 Function Reference

10-4

Functions — Alphabetical List 10

This section contains function reference pages listed alphabetically.

aicbic

10-5

10aicbicPurpose Akaike (AIC) and Bayesian (BIC) information criteria for model order selection

Syntax AIC = aicbic(LLF,NumParams)
[AIC,BIC] = aicbic(LLF,NumParams,NumObs)

Description aicbic computes the Akaike and Bayesian information criteria, using
optimized log-likelihood objective function (LLF) values as input. You can
obtain the LLF values by fitting models of the conditional mean and variance
to a univariate return series.

AIC = aicbic(LLF,NumParams) computes only the Akaike (AIC) information
criteria.

[AIC,BIC] = aicbic(LLF,NumParams,NumObs) computes both the Akaike
(AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters,
parsimony is the basis of the AIC and BIC model order selection criteria.

Input
Arguments

 LLF Vector of optimized log-likelihood objective function (LLF)
values associated with parameter estimates of the models
to be tested. aicbic assumes you obtained the LLF values
from the estimation function garchfit or the inference
function garchinfer.

NumParams Number of estimated parameters associated with each
LLF value in LLF. NumParams can be a scalar applied to all
values in LLF, or a vector the same length as LLF. All
elements of NumParams must be positive integers. Use
garchcount to compute NumParams values.

NumObs Sample size of the observed return series you associate
with each value of LLF. NumObs can be a scalar applied to
all values in LLF, or a vector the same length as LLF. It is
required to compute BIC. All elements of NumObs must be
positive integers.

aicbic

10-6

Output
Arguments

Examples See “Akaike and Bayesian Information Criteria” on page 8-5.

See Also garchdisp, garchfit, garchinfer

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

AIC Vector of AIC statistics associated with each LLF objective
function value. The AIC statistic is defined as

BIC Vector of BIC statistics associated with each LLF objective
function value. The BIC statistic is defined as

AIC 2– LLF×() 2 NumParams×()+=

BIC 2– LLF×()
NumParams log NumObs()×()+

=

archtest

10-7

10archtestPurpose Engle’s hypothesis test for the presence of ARCH/GARCH effects

Syntax [H,pValue,ARCHstat,CriticalValue] = archtest(Residuals,Lags,Alpha)

Description [H,pValue,ARCHstat,CriticalValue] = archtest(Residuals,Lags,Alpha)
tests the null hypothesis that a time series of sample residuals consists of
independent identically distributed (i.i.d.) Gaussian disturbances, i.e., that no
ARCH effects exist.

Given sample residuals obtained from a curve fit (e.g., a regression model),
archtest tests for the presence of th order ARCH effects by regressing the
squared residuals on a constant and the lagged values of the previous
squared residuals. Under the null hypothesis, the asymptotic test statistic,

, where is the number of squared residuals included in the regression
and is the sample multiple correlation coefficient, is asymptotically
chi-square distributed with degrees of freedom. When testing for ARCH
effects, a GARCH(P,Q) process is locally equivalent to an ARCH(P+Q) process.

Input
Arguments

M
M

T R2
() T

R2

M

Residuals Time-series column vector of sample residuals obtained from a
curve fit, which archtest examines for the presence of ARCH
effects. The last row contains the most recent observation.

Lags Vector of positive integers indicating the lags of the squared
sample residuals included in the ARCH test statistic. If
specified, each lag should be significantly less than the length
of Residuals. If Lags = [] or is not specified, the default is 1
lag (i.e., first-order ARCH).

Alpha Significance levels of the hypothesis test. Alpha can be a
scalar applied to all lags in Lags, or a vector of significance
levels the same length as Lags. If Alpha = [] or is not
specified, the default is 0.05. For all elements, , of Alpha,

.
α

0 α 1< <

archtest

10-8

Output
Arguments

Examples Example 1. Create a time-series column vector of 100 (synthetic) residuals,
then test for the first, second, and fourth order ARCH effects at the 10 percent
significance level.

randn('state',0) % Start from a known state.
residuals = randn(100,1); % 100 Gaussian deviates ~ N(0,1)
[H,P,Stat,CV] = archtest(residuals,[1 2 4]',0.10);
[H,P,Stat,CV]

ans =

 0 0.3925 0.7312 2.7055
 0 0.5061 1.3621 4.6052
 0 0.7895 1.7065 7.7794

Example 2. See “Analysis and Estimation Example Using the Default Model”
on page 2-15 for another example.

See Also lbqtest

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
1982, pp. 987-1007.

H Boolean decision vector. 0 indicates acceptance of the null
hypothesis that no ARCH effects exist; i.e., there is
homoscedasticity at the corresponding element of Lags. 1
indicates rejection of the null hypothesis. The length of H is
the same as the length of Lags.

pValue Vector of P-values (significance levels) at which archtest
rejects the null hypothesis of no ARCH effects at each lag in
Lags.

ARCHstat Vector of ARCH test statistics for each lag in Lags.

CriticalValue Vector of critical values of the chi-square distribution for
comparison with the corresponding element of ARCHstat.

archtest

10-9

[3] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

[4] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

autocorr

10-10

10autocorrPurpose Plot or return computed sample autocorrelation function

Syntax autocorr(Series,nLags,M,nSTDs)
[ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs)

Description autocorr(Series,nLags,M,nSTDs) computes and plots the sample ACF of a
univariate, stochastic time series with confidence bounds. To plot the ACF
sequence without the confidence bounds, set nSTDs = 0.

[ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs) computes and
returns the ACF sequence.

Input
Arguments

Series Column vector of observations of a univariate time series for
which autocorr computes or plots the sample autocorrelation
function (ACF). The last row of Series contains the most recent
observation of the time series.

nLags Positive scalar integer indicating the number of lags of the ACF to
compute. If nLags = [] or is not specified, the default is to
compute the ACF at lags 0, 1, 2, ..., , where

= min([20,length(Series)-1]).

M Nonnegative integer scalar indicating the number of lags beyond
which the theoretical ACF is effectively 0. autocorr assumes the
underlying Series is an MA(M) process, and uses Bartlett’s
approximation to compute the large-lag standard error for lags
greater than M. If M = [] or is not specified, the default is 0, and
autocorr assumes that Series is Gaussian white noise. If Series
is a Gaussian white noise process of length , the standard error
is approximately . M must be less than nLags.

nSTDs Positive scalar indicating the number of standard deviations of
the sample ACF estimation error to compute. autocorr assumes
the theoretical ACF of Series is 0 beyond lag M. When M = 0 and
Series is a Gaussian white noise process of length , specifying
nSTDs results in confidence bounds at . If
nSTDs = [] or is not specified, the default is 2 (i.e., approximate
95 percent confidence interval).

T
T

N
1 N⁄

N
nSTDs N⁄()±

autocorr

10-11

Output
Arguments

Examples Example 1. Create an MA(2) time series from a column vector of 1000
Gaussian deviates, and assess whether the ACF is effectively zero for lags
greater than 2.

randn('state',0) % Start from a known state.
x = randn(1000,1); % 1000 Gaussian deviates ~ N(0,1).
y = filter([1 -1 1],1,x); % Create an MA(2) process.
[ACF,Lags,Bounds] = autocorr(y,[],2); % Compute the ACF with
 % 95 percent confidence.
[Lags, ACF]

ans =
 0 1.0000
 1.0000 -0.6487
 2.0000 0.3001
 3.0000 0.0229
 4.0000 0.0196
 5.0000 -0.0489
 6.0000 0.0452
 7.0000 0.0012
 8.0000 -0.0214
 9.0000 0.0235
 10.0000 0.0340
 11.0000 -0.0392
 12.0000 0.0188
 13.0000 0.0504
 14.0000 -0.0600

ACF Sample autocorrelation function of Series. ACF is a vector of
length nLags+1 corresponding to lags 0, 1, 2, ..., nLags. The first
element of ACF is unity, that is, ACF(1) = 1 = lag 0 correlation.

Lags Vector of lags corresponding to ACF(0,1,2,...,nLags). Since an
ACF is symmetric about 0 lag, autocorr ignores negative lags.

Bounds Two-element vector indicating the approximate upper and lower
confidence bounds, assuming that Series is an MA(M) process.
Values of ACF beyond lag M that are effectively 0 lie within these
bounds. Note that autocorr computes Bounds only for lags
greater than M.

autocorr

10-12

 15.0000 0.0251
 16.0000 0.0441
 17.0000 -0.0732
 18.0000 0.0755
 19.0000 -0.0571
 20.0000 0.0485

Bounds

Bounds =
 0.0899
 -0.0899

autocorr(y,[],2) % Use the same example, but plot the ACF
 % sequence with confidence bounds.

Example 2. See “Analysis and Estimation Example Using the Default Model”
on page 2-15 for another example.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

autocorr

10-13

See Also crosscorr, parcorr
filter (MATLAB)

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

crosscorr

10-14

10crosscorrPurpose Plot or return computed sample crosscorrelation function

Syntax crosscorr(Series1,Series2,nLags,nSTDs)
[XCF,Lags,Bounds] = crosscorr(Series1,Series2,nLags,nSTDs)

Description crosscorr(Series1,Series2,nLags,nSTDs) computes and plots the sample
crosscorrelation function (XCF) between two univariate, stochastic time series.
To plot the XCF sequence without the confidence bounds, set nSTDs = 0.

[XCF,Lags,Bounds] = crosscorr(Series1,Series2,nLags,nSTDs)
computes and returns the XCF sequence.

Input
Arguments

Output
Arguments

Series1 Column vector of observations of the first univariate time series
for which crosscorr computes or plots the sample
crosscorrelation function (XCF). The last row of Series1 contains
the most recent observation.

Series2 Column vector of observations of the second univariate time series
for which crosscorr computes or plots the sample XCF. The last
row of Series2 contains the most recent observation.

nLags Positive scalar integer indicating the number of lags of the XCF to
compute. If nLags = [] or is not specified, crosscorr computes
the XCF at lags , where

= min([20,min([length(Series1),length(Series2)])-1]).

nSTDs Positive scalar indicating the number of standard deviations of
the sample XCF estimation error to compute, if Series1 and
Series2 are uncorrelated. If nSTDs = [] or is not specified, the
default is 2 (i.e., approximate 95 percent confidence interval).

0 1± 2± … T±, , , ,
T

XCF Sample crosscorrelation function between Series1 and Series2.
XCF is a vector of length 2(nLags)+1, which corresponds to lags

. The center element of XCF contains the 0th
lag cross correlation.
0 1± 2± … nLAGs±, , , ,

crosscorr

10-15

Examples Example 1. Create a time-series column vector of 100 Gaussian deviates, and
a delayed version lagged by four samples. Compute the XCF, and then plot it
to see the XCF peak at the fourth lag.

randn('state',100) % Start from a known state.
x = randn(100,1); % 100 Gaussian deviates, N(0,1).
y = lagmatrix(x,4); % Delay it by 4 samples.
y(isnan(y)) = 0; % Replace NaNs with zeros.
[XCF,Lags,Bounds] = crosscorr(x,y); % Compute the XCF with
 % 95 percent confidence.
[Lags, XCF]

ans =

 -20.0000 -0.0210
 -19.0000 -0.0041
 -18.0000 0.0661
 -17.0000 0.0668
 -16.0000 0.0380
 -15.0000 -0.1060
 -14.0000 0.0235
 -13.0000 0.0240
 -12.0000 0.0366
 -11.0000 0.0505
 -10.0000 0.0661
 -9.0000 0.1072
 -8.0000 -0.0893
 -7.0000 -0.0018
 -6.0000 0.0730
 -5.0000 0.0204
 -4.0000 0.0352
 -3.0000 0.0792
 -2.0000 0.0550
 -1.0000 0.0004

Lags Vector of lags corresponding to XCF(-nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper and lower
confidence bounds, assuming that Series1 and Series2 are
completely uncorrelated.

crosscorr

10-16

 0 -0.1556
 1.0000 -0.0959
 2.0000 -0.0479
 3.0000 0.0361
 4.0000 0.9802
 5.0000 0.0304
 6.0000 -0.0566
 7.0000 -0.0793
 8.0000 -0.1557
 9.0000 -0.0128
 10.0000 0.0623
 11.0000 0.0625
 12.0000 0.0268
 13.0000 0.0158
 14.0000 0.0709
 15.0000 0.0102
 16.0000 -0.0769
 17.0000 0.1410
 18.0000 0.0714
 19.0000 0.0272
 20.0000 0.0473

Bounds

Bounds =
 0.2000
 -0.2000

crosscorr(x,y) % Use the same example, but plot the XCF
 % sequence. Note the peak at the 4th lag.

crosscorr

10-17

Example 2. See “Analysis and Estimation Example Using the Default Model”
on page 2-15 for another example.

See Also autocorr, parcorr
filter (MATLAB)

−20 −15 −10 −5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

S
am

pl
e

C
ro

ss
 C

or
re

la
tio

n

Sample Cross Correlation Function (XCF)

garchar

10-18

10garcharPurpose Convert finite-order ARMA models to infinite-order autoregressive (AR)
models

Syntax InfiniteAR = garchar(AR,MA,NumLags)

Description InfiniteAR = garchar(AR,MA,NumLags) computes the coefficients of an
infinite-order AR model, using the coefficients of the equivalent univariate,
stationary, invertible, finite-order ARMA(R,M) model as input. garchar
truncates the infinite-order AR coefficients to accommodate a user-specified
number of lagged AR coefficients.

Input
Arguments

Output
Arguments

In the following ARMA(R,M) model, is the return series of interest and
 the innovations noise process.

AR R-element vector of autoregressive coefficients associated with
the lagged observations of a univariate return series modeled
as a finite-order, stationary, invertible ARMA(R,M) model.

MA M-element vector of moving-average coefficients associated
with the lagged innovations of a finite-order, stationary,
invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar
includes in the approximation of the infinite-order AR
representation. NumLags is an integer scalar and determines
the length of the infinite-order AR output vector. If
NumLags = [] or is not specified, the default is 10.

InfiniteAR Vector of coefficients of the infinite-order AR representation
associated with the finite-order ARMA model specified by the
AR and MA input vectors. InfiniteAR is a vector of length
NumLags. The jth element of InfiniteAR is the coefficient of
the jth lag of the input series in an infinite-order AR
representation. Note that Box, Jenkins, and Reinsel refer to
the infinite-order AR coefficients as “ weights.”π

yt{ }
εt{ }

garchar

10-19

If you write this model equation as

you can specify the garchar input coefficient vectors, AR and MA, exactly as you
read them from the model. In general, the jth elements of AR and MA are the
coefficients of the jth lag of the return series and innovations processes
and , respectively. garchar assumes that the current-time-index
coefficients of and are 1 and are not part of AR and MA.

In theory, you can use the weights returned in InfiniteAR to approximate
 as a pure AR process.

Consistently, the jth element of the truncated infinite-order autoregressive
output vector, or InfiniteAR(j), is the coefficient of the jth lag of the
observed return series, , in this equation. See Box, Jenkins, and Reinsel
[8], Section 4.2.3, pages 106-109.

Examples For the following ARMA(2,2) model, use garchar to obtain the first 20 weights
of the infinite-order AR approximation.

From this model,

AR = [0.5 -0.8]
MA = [-0.6 0.08]

Since the current-time-index coefficients of and are defined to be 1, the
example omits them from AR and MA. This saves time and effort when you
specify parameters using the garchset and garchget interfaces.

PI = garchar([0.5 -0.8], [-0.6 0.08], 20);
PI'

yt φiyt i–
i 1=

R

∑ εt θjεt j–

j 1=

M

∑+ +=

yt φ1yt 1– … φRyt R– εt θ1εt 1– … θMεt M–+ + + + + +=

yt j–
εt j–

yt εt

π
yt

yt πiyt i–
i 1=

∞

∑ εt+=

πj
yt j–

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=

yt εt

garchar

10-20

ans =
 -0.1000
 -0.7800
 -0.4600
 -0.2136
 -0.0914
 -0.0377
 -0.0153
 -0.0062
 -0.0025
 -0.0010
 -0.0004
 -0.0002
 -0.0001
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000
 -0.0000

See Also garchfit, garchma, garchpred

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

garchcount

10-21

10garchcountPurpose Count number of GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Description NumParams = garchcount(Coeff) counts and returns the number of estimated
coefficients from a specification structure, as returned by garchfit, containing
coefficient estimates and equality constraint information. garchcount is a
helper utility designed to support the model selection function aicbic.

Input
Arguments

Output
Arguments

Example See “Akaike and Bayesian Information Criteria” on page 8-5.

See Also aicbic, garchdisp, garchfit

Coeff Specification structure containing coefficient estimates and
equality constraints. Coeff is an output of the estimation
function garchfit.

NumParams Number of estimated parameters, i.e., coefficients, included in
the conditional mean and variance specifications, less any
parameters held constant, as equality constraints, during the
estimation. The aicbic function needs NumParams to calculate
the Akaike (AIC) and Bayesian (BIC) statistics.

garchdisp

10-22

10garchdispPurpose Display estimation results

Syntax garchdisp(Coeff,Errors)

Description garchdisp(Coeff,Errors) displays coefficient estimates, standard errors, and
T-statistics from a GARCH specification structure that was output by the
estimation function garchfit.

This function displays estimation results, and returns no output arguments.
The tabular display includes parameter estimates, standard errors, and
T-statistics for each parameter in the conditional mean and variance models.
Parameters held fixed during the estimation process have the word 'Fixed'
displayed in the standard error and T-statistic columns, indicating that the
parameter was set as an equality constraint.

Input
Arguments

Examples The following code uses garchfit to generate the GARCH specification
structure Coeff and the standard errors structure Errors for a return series of
1000 simulated observations based on a GARCH(1,1) model. It then calls
garchdisp to display the estimation results. Setting 'Display' to 'off'
suppresses display of the iterative optimization information produced by
garchfit.

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05,...
 'Display','off');
[e,s,y] = garchsim(spec,1000);
[Coeff,Errors] = garchfit(spec,y);
garchdisp(Coeff,Errors)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

Coeff GARCH specification structure containing estimated coefficients
and equality constraint information. Coeff is an output of the
estimation function garchfit.

Errors Structure containing the estimation errors (i.e., the standard
errors) of the coefficients in Coeff. Errors is also an output of the
estimation function garchfit.

garchdisp

10-23

 Standard T
 Parameter Value Error Statistic
 ----------- ----------- ------------ -----------
 C -0.0024759 0.0012919 -1.9165
 K 4.6877e-005 5.3555e-005 0.8753
 GARCH(1) 0.93904 0.041604 22.5707
 ARCH(1) 0.035503 0.015123 2.3477

See Also garchcount, garchfit

garchfit

10-24

10garchfitPurpose Univariate GARCH process parameter estimation

Syntax [Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Series)
[...] = garchfit(Spec,Series)
[...] = garchfit(Spec,Series,X)
[...] = garchfit(Spec,Series,X,PreInnovations,PreSigmas,PreSeries)
garchfit(...)

Description Given an observed univariate return series, garchfit estimates the
parameters of a conditional mean specification of ARMAX form, and
conditional variance specification of GARCH, EGARCH, or GJR form. The
estimation process infers the innovations (i.e., residuals) from the return
series, and fits the model specification to the return series by maximum
likelihood.

[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Series)
models an observed univariate return series as a constant, C, plus GARCH(1,1)
conditionally Gaussian innovations. For models beyond this simple (yet
common) model, you must provide model parameters in the GARCH
specification structure Spec.

[...] = garchfit(Spec,Series) infers the innovations from the return
series and fits the model specification, contained in Spec, to the return series
by maximum likelihood.

[...] = garchfit(Spec,Series,X) provides a regression component X for the
conditional mean.

[...] = garchfit(Spec,Series,X,PreInnovations,PreSigmas,PreSeries)
uses presample observations, contained in the time-series column vectors
PreInnovations, PreSigmas, and PreSeries, to infer the outputs Innovations
and Sigmas. These vectors form the conditioning set used to initiate the inverse
filtering, or inference, process. If you provide no explicit presample data, the
necessary presample observations are derived by conventional time-series
techniques (see “Automatic Minimization of Transient Effects” on page 4-6).

If you specify at least one set, but fewer than three sets, of presample data,
garchsim does not attempt to derive presample observations for those you omit.
If you specify your own presample data, you must specify all that are necessary

garchfit

10-25

for the specified conditional mean and variance models. See “User-Specified
Presample Observations” on page 5-11.

garchfit(...) with input arguments as shown above but with no output
arguments, displays the final parameter estimates and standard errors. It also
produces a tiered plot of the original return series, the inferred innovations,
and the corresponding conditional standard deviations.

Input
Arguments

Spec GARCH specification structure containing the conditional
mean and variance specifications. It also contains the
optimization parameters needed for the estimation.Create
this structure by calling garchset, or use the Coeff output
structure returned by garchfit.

Series Time-series column vector of observations of the
underlying univariate return series of interest. Series is
the response variable representing the time series to be
fitted to conditional mean and variance specifications. The
last element of Series holds the most recent observation.

X Time-series regression matrix of observed explanatory
data. Typically, X is a matrix of asset returns (e.g., the
return series of an equity index), and represents the past
history of the explanatory data. Each column of X is an
individual time series used as an explanatory variable in
the regression component of the conditional mean. In each
column, the first row contains the oldest observation and
the last row the most recent.
The number of valid (non-NaN) most recent observations in
each column of X must equal or exceed the number of valid
most recent observations in Series. If the number of valid
observations in a column of X exceeds that of Series,
garchfit uses only the most recent observations of X. If
X = [] or is not specified, the conditional mean has no
regression component.

garchfit

10-26

PreInnovations Time-series column vector of presample innovations that
garchfit uses to condition the recursive mean and
variance models. This column vector can have any number
of rows, provided it contains sufficient observations to
initialize the mean and variance equations. I.e., if M and Q
are the number of lagged innovations required by the
conditional mean and variance equations, respectively,
then PreInnovations must have at least max(M,Q) rows. If
the number of rows exceeds max(M,Q), then garchfit uses
only the last (i.e., most recent) max(M,Q) rows.

PreSigmas Time-series column vector of positive presample
conditional standard deviations that garchfit uses to
condition the recursive variance model. This vector can
have any number of rows, provided it contains sufficient
observations to initialize the conditional variance
equation. I.e., if P and Q are the number of lagged
conditional standard deviations and lagged innovations
required by the conditional variance equation, respectively,
then PreSigmas must have at least P rows for GARCH and
GJR models, and at least max(P,Q) rows for EGARCH
models. If the number of rows exceeds the requirement,
then garchfit uses only the last (i.e., most recent) rows.

PreSeries Time-series column vector of presample observations of the
return series of interest that garchfit uses to condition
the recursive mean model. This vector can have any
number of rows, provided it contains sufficient
observations to initialize the conditional mean equation.
Thus, if R is the number of lagged observations of the
return series required by the conditional mean equation,
then PreSeries must have at least R rows. If the number of
rows exceeds R, then garchfit uses only the last (i.e., most
recent) R rows.

garchfit

10-27

Output
Arguments

Coeff GARCH specification structure containing the estimated
coefficients. Coeff is of the same form as the Spec input
structure. Toolbox functions such as garchset, garchget,
garchsim, garchinfer, and garchpred can accept either Spec
or Coeff as input arguments.

Errors Structure containing the estimation errors (i.e., the standard
errors) of the coefficients. Errors is of the same form as the
Spec and Coeff structures. In the event an error occurs in
the calculation of the standard errors, all fields associated
with estimated coefficients are set to NaN.

LLF Optimized log-likelihood objective function value associated
with the parameter estimates found in Coeff. garchfit
performs the optimization using the fmincon function of the
Optimization Toolbox.

Innovations Innovations (i.e., residuals) time-series column vector
inferred from Series. The size of Innovations is the same as
the size of Series. In the event of an error, Innovations is a
vector of NaNs.

Sigmas Conditional standard deviation vector corresponding to
Innovations. The size of Sigmas is the same as the size of
Series. In the event of an error, Sigmas is a vector of NaNs.

Summary Structure of summary information about the optimization
process. The fields and their possible values are

exitFlag Describes the exit condition:
>0 Log-likelihood objective function
 converged to a solution.
 0 Maximum number of function
 evaluations or iterations was exceeded.
<0 Function did not converge to a solution.

warning One of the following strings:
'No Warnings'
'ARMA Model Is Not
 Stationary/Invertible'

garchfit

10-28

Note garchfit calculates the error covariance matrix of the parameter
estimates Summary.covMatrix, and the corresponding standard errors found
in the Errors output structure using finite difference approximation. In
particular, it calculates the standard errors using the outer-product method
(see Hamilton [8], Section 5.8, bottom of page 143).

Example 1 The following code uses garchfit to estimate the parameters for a return
series of 1000 simulated observations based on a GARCH(1,1) model. Because
the 'Display' parameter defaults to 'on', garchfit displays diagnostic and
iterative information.

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05);
[e,s,y] = garchsim(spec,1000);
[Coeff,Errors] = garchfit(spec,y);

%%%
 Diagnostic Information

Number of variables: 4

converge One of the following strings:
'Function Converged to a Solution'
'Function Did NOT Converge'
'Maximum Function Evaluations or
 Iterations Reached'

constraints One of the following strings:
'No Boundary Constraints'
'Boundary Constraints Active; Errors
 May Be Inaccurate'

covMatrix Covariance matrix of the parameter
estimates

iterations Number of iterations

functionCalls Number of function evaluations

lambda Structure, output by fmincon, containing
the Lagrange multipliers at the solution x

garchfit

10-29

Functions
 Objective: garchllfn
 Gradient: finite-differencing
 Hessian: finite-differencing (or Quasi-Newton)
 Nonlinear constraints: armanlc
 Gradient of nonlinear constraints: finite-differencing

Constraints
 Number of nonlinear inequality constraints: 0
 Number of nonlinear equality constraints: 0

 Number of linear inequality constraints: 1
 Number of linear equality constraints: 0
 Number of lower bound constraints: 4
 Number of upper bound constraints: 4

Algorithm selected
 medium-scale

%%%
 End diagnostic information

 max Directional First-order
Iter F-count f(x) constraint Step-size derivative optimality Procedure
 1 22 -1762.62 -9.975e-005 0.000488 1.32e+004 1.47e+004
 2 35 -1763.04 -9.897e-005 0.00781 126 2.13e+005
 3 43 -1764.69 -7.423e-005 0.25 4.19 1.28e+005
 4 57 -1764.72 -7.477e-005 0.00391 6.92 1.12e+005
 5 64 -1765.27 -4.128e-005 0.5 0.228 3.59e+003
 6 78 -1765.28 -4.751e-005 0.00391 3.34 2.98e+004
 7 89 -1765.28 -4.617e-005 0.0313 0.0725 2.91e+004
 8 101 -1765.29 -4.927e-005 0.0156 0.39 84
 9 107 -1765.29 -4.73e-005 1 -0.000969 6.06
 10 114 -1765.29 -4.668e-005 0.5 -0.000135 213
 11 134 -1765.29 -4.668e-005 -6.1e-005 -2.4e-005 213 Hessian modified
 12 140 -1765.29 -4.668e-005 1 1.39e-007 19.5 Hessian modified twice
 Optimization terminated successfully:
 Magnitude of directional derivative in search direction
 less than 2*options.TolFun and maximum constraint violation
 is less than options.TolCon
 No Active Constraints

Example 2 Using the same data as above, the example sets 'Display' to 'off' and calls
garchfit with no output arguments. In this case, garchfit displays the final
parameter estimates and standard errors, then produces a tiered plot.

garchfit

10-30

spec = garchset(spec,'Display','off');
garchfit(spec,y)

 Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

 Conditional Probability Distribution: Gaussian
 Number of Model Parameters Estimated: 4

 Standard T
 Parameter Value Error Statistic
----------- ----------- ------------ -----------
 C -0.0024759 0.0012919 -1.9165
 K 4.6877e-005 5.3555e-005 0.8753
 GARCH(1) 0.93904 0.041604 22.5707
 ARCH(1) 0.035503 0.015123 2.3477

 Log Likelihood Value: 1765.29

0 200 400 600 800 1000
−0.2

0

0.2
Innovations

In
no

va
tio

n

0 200 400 600 800 1000
0.02

0.04

0.06

0.08
Conditional Standard Deviations

S
ta

nd
ar

d
D

ev
ia

tio
n

0 200 400 600 800 1000
−0.2

0

0.2
Returns

R
et

ur
n

garchfit

10-31

See Also garchpred, garchset, garchsim
fmincon (in the Optimization Toolbox)

References [1] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics,
Vol. 69, 1987, pp 542-547.

[2] Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp 307-327.

[3] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[4] Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

[5] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
1982, pp 987-1007.

[6] Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model,” Econometrica, Vol. 59,
1987, pp 391-407.

[7] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation Between
Expected Value and the Volatility of the Nominal Excess Return on Stocks,”
The Journal of Finance, Vol.48, 1993, pp 1779-1801.

[8] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

[9] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

garchget

10-32

10garchgetPurpose Retrieve a GARCH specification structure parameter

Syntax ParameterValue = garchget(Spec,'ParameterName')

Description ParameterValue = garchget(Spec,'ParameterName') returns the value of
the specified parameter from the GARCH specification structure Spec.

Input
Arguments

Output
Arguments

Examples Spec = garchset('P',1,'Q',1) % Create a GARCH(P=1,Q=1) model.
Spec =
 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: []
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []

P = garchget(Spec,'P') % Retrieve the order P.
P =
 1

See Also garchfit, garchpred, garchset, garchsim

Spec GARCH specification structure returned by garchset, or
the output (Coeff) of the estimation function garchfit.

ParameterName String indicating the name of the parameter whose value
garchget extracts from Spec. It is sufficient to type only
the leading characters that uniquely identify a parameter
name. See garchset for a list of valid parameter names.
ParameterName is case insensitive.

ParameterValue Value of the named parameter extracted from the
structure Spec. garchget returns the appropriate model
default value if the specified parameter is not defined in
the specification structure.

garchinfer

10-33

10garchinferPurpose Infer GARCH innovation processes from return series

Syntax [Innovations,Sigmas,LLF] = garchinfer(Spec,Series)
[...] = garchinfer(Spec,Series,X)
[...] = garchinfer(Spec,Series,X,...
 PreInnovations,PreSigmas,PreSeries)

Description [Innovations,Sigmas,LLF] = garchinfer(Spec,Series) given a conditional
mean specification of ARMAX form and conditional variance specification of
GARCH, EGARCH, or GJR form, infers the innovations and conditional
standard deviations from an observed univariate return series. Since
garchinfer is an interface to the appropriate log-likelihood objective function,
the log-likelihood value is also computed for convenience.

[...] = garchinfer(Spec,Series,X) also accepts a time-series regression
matrix X of observed explanatory data. garchinfer treats each column of X as
an individual time series, and uses it as an explanatory variable in the
regression component of the conditional mean.

[...] = garchinfer(Spec,Series,X,PreInnovations,PreSigmas,
PreSeries) uses presample observations, contained in the time-series
matrices or column vectors PreInnovations, PreSigmas, and PreSeries, to
infer the outputs Innovations and Sigmas. These vectors form the conditioning
set used to initiate the inverse filtering, or inference, process.

If you specify the presample data as matrices, the number of columns
(realizations) of each must be the same as the number of columns (realizations)
of the Series input. In this case, the presample information of a given column
is used to infer the residuals and standard deviations of the corresponding
column of Series. If you specify the presample data as column vectors, the
vectors are applied to each column of Series.

If you provide no explicit presample data, the necessary presample
observations are derived by conventional time-series techniques (see
“Automatic Minimization of Transient Effects” on page 4-6.

If you specify at least one set, but fewer than three sets, of presample data,
garchsim does not attempt to derive presample observations for those you omit.
If you specify your own presample data, you must specify all that are necessary

garchinfer

10-34

for the specified conditional mean and variance models. See “User-Specified
Presample Observations” on page 5-11.

Input
Arguments

Spec GARCH specification structure containing the conditional
mean and variance specifications. It also contains the
optimization parameters needed for the estimation.Create
this structure by calling garchset, or use the Coeff output
structure returned by garchfit.

Series Time-series matrix or column vector of observations of the
underlying univariate return series of interest. Series is
the response variable representing the time series fitted to
conditional mean and variance specifications. Each
column of Series in an independent realization (i.e., path).
The last row of Series holds the most recent observation
of each realization.

X Time-series regression matrix of explanatory variables.
Typically, X is a regression matrix of asset returns (e.g., the
return series of an equity index). Each column of X is an
individual time series used as an explanatory variable in
the regression component of the conditional mean. In each
column, the first row contains the oldest observation and
the last row the most recent.
The number of valid (non-NaN) observations below the last
NaN in each column of X must equal or exceed the number
of valid observations below the last NaN in Series. If the
number of valid observations in a column of X exceeds that
of Series, garchinfer uses only the most recent. If X = []
or is not specified, the conditional mean has no regression
component.

garchinfer

10-35

PreInnovations Time-series matrix or column vector of presample
innovations on which the recursive mean and variance
models are conditioned. This array can have any number
of rows, provided it contains sufficient observations to
initialize the mean and variance equations. I.e., if M and Q
are the number of lagged innovations required by the
conditional mean and variance equations, respectively,
then PreInnovations must have at least max(M,Q) rows.
If the number of rows exceeds max(M,Q), then only the last
(i.e., most recent) max(M,Q) rows are used. If
PreInnovations is a matrix, then the number of columns
must be the same as the number of columns in Series. If
PreInnovations is a column vector, then the vector is
applied to each column (i.e., realization) of Series.

garchinfer

10-36

PreSigmas Time-series matrix or column vector of positive presample
conditional standard deviations on which the recursive
variance model is conditioned. This array can have any
number of rows, provided it contains sufficient
observations to initialize the conditional variance
equation. I.e., if P and Q are the number of lagged
conditional standard deviations and lagged innovations
required by the conditional variance equation,
respectively, then PreSigmas must have at least P rows for
GARCH and GJR models, and at least max(P,Q) rows for
EGARCH models.
If the number of rows exceeds the requirement, then only
the last (i.e., most recent) rows are used. If PreSigmas is a
matrix, then the number of columns must be the same as
the number of columns in Series. If PreSigmas is a column
vector, then the vector is applied to each column (i.e.,
realization) of Series.

PreSeries Time-series matrix or column vector of presample
observations of the return series of interest on which the
recursive mean model is conditioned. This array can have
any number of rows, provided it contains sufficient
observations to initialize the conditional mean equation.
Thus, if R is the number of lagged observations of the
return series required by the conditional mean equation,
then PreSeries must have at least R rows. If the number
of rows exceeds R, then only the last (i.e., most recent) R
rows are used. If PreSeries is a matrix, then the number
of columns must be the same as the number of columns in
Series. If PreSeries is a column vector, then the vector is
applied to each column (i.e., realization) of Series.

garchinfer

10-37

Output
Arguments

Remarks garchinfer performs essentially the same operation as garchfit, but without
the optimization. While garchfit calls the appropriate log-likelihood objective
function indirectly via the iterative numerical optimizer, garchinfer allows
you direct access to the same suite of log-likelihood objective functions.

Note that, for garchinfer, inputs Series, PreInnovations, PreSigmas, and
PreSeries, and outputs Innovations and Sigmas, are column-oriented
time-series arrays in which each column is associated with a unique
realization, or random path. For garchfit, these same inputs and outputs
cannot have multiple columns; i.e., they must all represent single realizations
of a univariate time series.

For additional details about estimation and inverse filtering, see “Maximum
Likelihood Estimation” on page 5-2 and “Presample Observations” on
page 5-11.

Examples See “Presample Data and Transient Effects” on page 5-23, “Presample
Observations” on page 6-5, and “Estimating the Model” on page 9-2.

See Also garchfit, garchpred, garchset, garchsim

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Innovations Innovations time-series matrix inferred from Series.
The size of Innovations is the same as the size of
Series.

Sigmas Conditional standard deviation time-series matrix
corresponding to Innovations. The size of Sigmas is the
same as the size of Series.

LLF Row vector of log-likelihood objective function values for
each realization of Series. The length of LLF is the same
as the number of columns in Series.

garchma

10-38

10garchmaPurpose Convert finite-order ARMA models to infinite-order moving average (MA)
models

Syntax InfiniteMA = garchma(AR,MA,NumLags)

Description InfiniteMA = garchma(AR,MA,NumLags) computes the coefficients of an
infinite-order MA model, using the coefficients of the equivalent univariate,
stationary, invertible, finite-order ARMA(R,M) model as input. garchma
truncates the infinite-order MA coefficients to accommodate the number of
lagged MA coefficients you specify in NumLags.

This function is particularly useful for calculating the standard errors of
minimum mean square error forecasts of univariate ARMA models.

Arguments

Output
Arguments

In the following ARMA(R,M) model, is the return series of interest and
 the innovations noise process.

AR R-element vector of autoregressive coefficients associated
with the lagged observations of a univariate return series
modeled as a finite-order, stationary, invertible ARMA(R,M)
model.

MA M-element vector of moving-average coefficients associated
with the lagged innovations of a finite-order, stationary,
invertible, univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma
includes in the approximation of the infinite-order MA
representation. NumLags is an integer scalar and determines
the length of the infinite-order MA output vector. If
NumLags = [] or is not specified, the default is 10.

InfiniteMA Vector of coefficients of the infinite-order MA representation
associated with the finite-order ARMA model specified by AR
and MA. InfiniteMA is a vector of length NumLags. The jth
element of InfiniteMA is the coefficient of the jth lag of the
innovations noise sequence in an infinite-order MA
representation. Note that Box, Jenkins, and Reinsel refer to
the infinite-order MA coefficients as the “ weights.”ψ

yt{ }
εt{ }

garchma

10-39

If you write this model equation as

you can specify the garchma input coefficient vectors, AR and MA, exactly as you
read them from the model. In general, the jth elements of AR and MA are the
coefficients of the jth lag of the return series and innovations processes
and , respectively. garchma assumes that the current-time-index
coefficients of and are 1 and are not part of AR and MA.

In theory, you can use the weights returned in InfiniteMA to approximate
 as a pure MA process.

Consistently, the jth element of the truncated infinite-order moving-average
output vector, or InfiniteMA(j), is the coefficient of the jth lag of the
innovations process, , in this equation. See Box, Jenkins, and Reinsel [8],
Section 5.2.2, pages 139-141.

Examples Suppose you want a forecast horizon of 10 periods for the following ARMA(2,2)
model.

To obtain probability limits for these forecasts, use garchma to compute the
first 9 (i.e., 10 - 1) weights of the infinite order MA approximation.

From the model, AR = [0.5 -0.8] and MA = [-0.6 0.08].

Since the current-time-index coefficients of and are 1, the example omits
them from AR and MA. This saves time and effort when you specify parameters
via the garchset and garchget user interfaces.

yt φiyt i–
i 1=

R

∑ εt θjεt j–

j 1=

M

∑+ +=

yt φ1yt 1– … φRyt R– εt θ1εt 1– … θMεt M–+ + + + + +=

yt j–
εt j–

yt εt

ψ
yt

yt εt ψiεt i–

i 1=

∞

∑+=

ψj
εt j–

yt 0.5yt 1– 0.8yt 2–– εt 0.6εt 1– 0.08εt 2–+–+=

yt εt

garchma

10-40

PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);
PSI'

ans =

 -0.1000
 -0.7700
 -0.3050
 0.4635
 0.4758
 -0.1329
 -0.4471
 -0.1172
 0.2991

See Also garchar, garchpred

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

garchplot

10-41

10garchplotPurpose Plot matched univariate innovations, volatility, and return series

Syntax garchplot(Innovations,Sigmas,Series)

Description garchplot lets you visually compare matched innovations, conditional
standard deviations, and returns. It provides a convenient way to compare
innovations series, simulated using garchsim or estimated using garchfit,
with companion conditional standard deviations, or returns series. You can
also use garchplot to plot forecasts, computed using garchpred, of conditional
standard deviations and returns.

In general, garchplot produces a tiered plot of matched time series. garchplot
does not display an empty or missing input array; i.e., garchplot allocates no
space in the tiered figure window to the array. garchplot displays valid
(nonempty) Innovations, Sigmas, and Series arrays in the top, center, and
bottom plots, respectively. Since garchplot assigns a title and label to each
plot according to its position in the argument list, you can ensure correct plot
annotation by using empty matrices ([]) as placeholders.

You can plot several realizations of each array simultaneously because
garchplot color codes corresponding realizations of each input array.
However, the plots can become cluttered if you try to display more than a few
realizations of each input at one time.

Input
Arguments

Innovations Time-series column vector or matrix of innovations. As a
column vector, Innovations represents a single realization of
a univariate time series in which the first element contains
the oldest observation and the last element the most recent.
As a matrix, each column of Innovations represents a single
realization of a univariate time series in which the first row
contains the oldest observation of each realization and the
last row the most recent. If Innovations = [], then
Innovations is not displayed.

garchplot

10-42

Examples Example 1. Assume that Innovations, Sigmas, and Series are not empty.

garchplot(Innovations) % Plot Innovations only.

garchplot(Innovations,[],Series) % Plot Innovations and
 % Series only.

garchplot([],Sigmas,Series) % Plot Sigmas and Series
 % only.

garchplot(Innovations,Sigmas,Series) % Plot all three vectors.

garchplot(Innovations,Sigmas,[]) % Plot Innovations and
 % Sigmas only.

garchplot(Innovations,Sigmas) % Plot Innovations and
 % Sigmas only.

Example 2. The following code uses the default GARCH(1,1) model to model
the Deutschmark/British pound foreign exchange series (see “Data Sets” on
page 1-11). It then uses the estimated model to generate a single path of 1000
observations for return series, innovations, and conditional standard deviation
processes.

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
[e,s,y] = garchsim(coeff,1000);
garchplot(e,s,y)

Sigmas Time-series column vector or matrix of conditional standard
deviations. In general, Innovations and Sigmas are the same
size, and form a matching pair of arrays. If Sigmas = [],
then Sigmas is not displayed.

Series Time-series column vector or matrix of asset returns. In
general, Series is the same size as Innovations and Sigmas,
and is organized in exactly the same manner. If Series = []
or is not specified, then Series is not displayed.

garchplot

10-43

See Also garchfit, garchpred, garchsim

0 200 400 600 800 1000
−0.05

0

0.05
Innovations

In
no

va
tio

n

0 200 400 600 800 1000
0

0.01

0.02
Conditional Standard Deviations

S
ta

nd
ar

d
D

ev
ia

tio
n

0 200 400 600 800 1000
−0.05

0

0.05
Returns

R
et

ur
n

garchpred

10-44

10garchpredPurpose Univariate GARCH process forecasting

Syntax [SigmaForecast,MeanForecast] = garchpred(Spec,Series,NumPeriods)
[SigmaForecast,MeanForecast] = ...
 garchpred(Spec,Series,NumPeriods,X,XF)
[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = ...
 garchpred(Spec,Series,NumPeriods)

Description garchpred forecasts the conditional mean of the univariate return series and
the standard deviation of the innovations NumPeriods into the future, using
specifications for the conditional mean and variance of an observed univariate
return series as input. garchpred also computes volatility forecasts of asset
returns over multiperiod holding intervals, and the standard errors of
conditional mean forecasts. The conditional mean is of general ARMAX form
and the conditional variance can be of GARCH, EGARCH, or GJR form. (See
“Conditional Mean and Variance Models” on page 2-6.)

[SigmaForecast,MeanForecast] = garchpred(Spec,Series,NumPeriods)
uses the conditional mean and variance specifications defined in Spec to
forecast the conditional mean, MeanForecast, of the univariate return series
and the standard deviation, SigmaForecast, of the innovations NumPeriods
into the future. The NumPeriods default is 1.

[SigmaForecast,MeanForecast] =
garchpred(Spec,Series,NumPeriods,X,XF) includes the time-series
regression matrix of observed explanatory data X and the time-series
regression matrix of forecasted explanatory data XF in the calculation of
MeanForecast. For MeanForecast, if you specify X, you must also specify XF.
Typically, X is the same regression matrix of observed returns, if any, that you
used for simulation (garchsim) or estimation (garchfit).

[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] =
garchpred(Spec,Series,Numperiods) also computes the volatility forecasts,
SigmaTotal, of the cumulative returns for assets held for multiple periods, and
the standard errors MeanRMSE associated with MeanForecast.

garchpred

10-45

Input
Arguments

Spec Specification structure for the conditional mean and variance
models. You can create Spec using the function garchset or
the estimation function garchfit.

Series Matrix of observations of the underlying univariate return
series of interest for which garchpred generates forecasts.
Each column of Series is an independent realization (i.e.,
path). The last row of Series holds the most recent
observation of each realization. garchpred treats those
observations as valid that are below the most recent NaN in
any column.
garchpred assumes that Series is a stationary stochastic
process. It also assumes that the ARMA component of the
conditional mean model (if any) is stationary and invertible.

NumPeriods Positive scalar integer representing the forecast horizon of
interest. It is expressed in periods, and should be compatible
with the sampling frequency of Series. If NumPeriods = [] or
is not specified, the default is 1.

garchpred

10-46

X Time-series regression matrix of observed explanatory data
that represents the past history of the explanatory data.
Typically, X is a regression matrix of asset returns, e.g., the
return series of an equity index. Each column of X is an
individual time series used as an explanatory variable in the
regression component of the conditional mean. In each
column, the first row contains the oldest observation and the
last row the most recent.
The most recent number of valid (non-NaN) observations in
each column of X must equal or exceed the most recent number
of valid observations in Series. If the number of valid
observations in a column of X exceeds that of Series,
garchpred uses only the most recent observations of X.
If X = [] or is not specified, the conditional mean has no
regression component.

XF Time-series matrix of forecasted explanatory data. XF
represents the evolution into the future of the same
explanatory data found in X. Because of this, XF and X must
have the same number of columns. In each column of XF, the
first row contains the one-period-ahead forecast, the second
row contains the two-period-ahead forecast, and so on.
The number of rows (forecasts) in each column (time series) of
XF must equal or exceed the forecast horizon NumPeriods.
When the number of forecasts in XF exceeds NumPeriods,
garchpred uses only the first NumPeriods forecasts.
If XF = [] or is not specified, the conditional mean forecast
(MeanForecast) has no regression component.

garchpred

10-47

Output
Arguments

SigmaForecast Matrix of conditional standard deviations of future
innovations (i.e., model residuals) on a per period basis. This
matrix represents the standard deviations derived from the
minimum mean square error (MMSE) forecasts associated
with the recursive volatility model, e.g., 'GARCH', 'GJR', or
'EGARCH', specified for the 'VarianceModel' parameter in
Spec. For GARCH(P,Q) and GJR(P,Q) models,
SigmaForecast is the square root of the MMSE conditional
variance forecasts. For EGARCH(P,Q) models,
SigmaForecast is the square root of the exponential of the
MMSE forecasts of the logarithm of conditional variance.
SigmaForecast has NumPeriods rows and the same number
of columns as Series. The first row contains the standard
deviation in the first period for each realization of Series,
the second row contains the standard deviation in the
second period, and so on. If you specify a forecast horizon
greater than 1, i.e., NumPeriods > 1, garchpred returns the
per-period standard deviations of all intermediate horizons
as well; in this case, the last row contains the standard
deviation at the specified forecast horizon.

MeanForecast Matrix of MMSE forecasts of the conditional mean of Series
on a per-period basis. MeanForecast is the same size as
SigmaForecast. The first row contains the forecast in the
first period for each realization of Series, the second row
contains the forecast in the second period, and so on.
Both X and XF must be nonempty for MeanForecast to have a
regression component. If X and XF are empty ([]) or not
specified, MeanForecast is based on an ARMA model. If you
specify X and XF, MeanForecast is based on the full ARMAX
model.

garchpred

10-48

SigmaTotal Matrix of MMSE volatility forecasts of Series over
multiperiod holding intervals. SigmaTotal is the same size
as SigmaForecast. The first row contains the standard
deviation of returns expected for assets held for one period
for each realization of Series, the second row contains the
standard deviation of returns expected for assets held for
two periods, and so on. The last row contains the standard
deviations of the cumulative returns obtained if an asset
was held for the entire NumPeriods forecast horizon.
If you specify X or XF, SigmaTotal = [].

MeanRMSE Matrix of root mean square errors (RMSE) associated with
MeanForecast. That is, MeanRMSE is the conditional standard
deviation of the forecast errors (i.e., the standard error of
the forecast) of the corresponding MeanForecast matrix.
MeanRMSE is the same size as MeanForecast and garchpred
organizes it in exactly the same manner, provided the
conditional mean is modeled as a stationary/invertible
ARMA process.
If you specify X or XF, MeanRMSE = [].

garchpred

10-49

Note garchpred calls the function garchinfer to access the past history of
innovations and conditional standard deviations inferred from Series. If you
need the innovations and conditional standard deviations, call garchinfer
directly.

Notes EGARCH(P,Q) models represent the logarithm of the conditional variance as
the output of a linear filter. As such, the minimum mean square error forecasts
derived from EGARCH(P,Q) models are optimal for the logarithm of the
conditional variance, but are generally downward-biased forecasts of the
conditional variance process itself. Since the output arrays SigmaForecast,
SigmaTotal, and MeanRMSE are based upon the conditional variance forecasts,
these outputs generally underestimate their true expected values for
conditional variances derived from EGARCH(P,Q) models. The important
exception is the one-period-ahead forecast, which is unbiased in all cases.

Examples See “Examples” on page 6-8 and “Forecasting” on page 9-4.

See Also garchfit, garchinfer, garchma, garchset, garchsim

References [1] Baillie, R.T., and T. Bollerslev, “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of Econometrics, Vol. 52,
1992, pp 91-113.

[2] Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp 307-327.

[3] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” The Review Economics and Statistics,
Vol. 69, 1987, pp 542-547.

[4] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[5] Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

[6] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
1982, pp 987-1007.

garchpred

10-50

[7] Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model,” Econometrica, Vol. 59,
1987, pp 391-407.

[8] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation Between
Expected Value and the Volatility of the Nominal Excess Return on Stocks,”
Journal of Finance, Vol.48, 1993, pp 1779-1801.

[9] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

[10] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

garchset

10-51

10garchsetPurpose Create or modify GARCH specification structure

Syntax Spec = garchset('Parameter1',Value1,'Parameter2',Value2,...)
Spec = garchset(OldSpec,'Parameter1',Value1,...)
Spec = garchset
garchset

Description Spec = garchset('Parameter1',Value1,'Parameter2',Value2,...)
creates a GARCH model specification structure Spec using the
parameter-value pairs specified in the input argument list. Use garchget to
retrieve the values of specification structure parameters.

Spec = garchset(OldSpec,'Parameter1',Value1,...) modifies an existing
GARCH specification structure OldSpec by changing the named parameters to
the specified values. garchset returns an error if the new parameter values
would create an invalid model.

Spec = garchset creates a GARCH specification structure Spec for the
GARCH Toolbox default model. For this model, the conditional mean equation
is a simple constant plus additive noise, while the conditional variance
equation of the additive noise is a GARCH(1,1) model. You can use this Spec as
input to garchfit, but it is invalid as input to garchinfer, garchpred, and
garchsim.

garchset (with no input arguments and no output arguments) displays all
parameter names and the default values where appropriate.

Input
Arguments

Parameter1,
Parameter2,
...

String representing a valid parameter field of the output
structure Spec. “Parameters” on page 10-52 lists the valid
parameters and describes their allowed values. A parameter
name needs to include only sufficient leading characters to
uniquely identify the parameter. Parameter names are case
insensitive.

Value1,
Value2,...

Value assigned to the corresponding Parameter.

OldSpec Existing GARCH specification structure as generated by
garchset or garchfit.

garchset

10-52

Output
Arguments

Parameters A GARCH specification structure includes these parameters. Except as noted,
garchset sets all parameters you do not specify to their respective defaults.

• “General Parameters” on page 10-52

• “Conditional Mean Parameters” on page 10-52

• “Conditional Variance Parameters” on page 10-53

• “Equality Constraint Parameters” on page 10-54

• “Optimization Parameters” on page 10-55

General Parameters

Conditional Mean Parameters
If you specify coefficient vectors AR and MA, but not their corresponding model
orders R and M, garchset infers the values of the model orders from the lengths
of the coefficient vectors.

Spec GARCH specification structure containing the style, orders, and
coefficients (if specified) of the conditional mean and variance
specifications of a GARCH model. It also contains the parameters
associated with the function fmincon in the Optimization Toolbox.

Parameter Value Description

Comment String.
Default is a model
summary.

User-defined summary
comment. An example of the
default is 'Mean: ARMAX(0,0,?);
Variance: GARCH(1,1)'.

Distribution 'T' or 'Gaussian'.
Default is 'Gaussian'.

Conditional distribution of
innovations.

DoF Scalar. Default = []. Degrees of freedom parameter
for t distributions (must be > 2).

Parameter Value Description

R Nonnegative integer
scalar. Default is 0.

Autoregressive model order of an
ARMA(R,M) model.

garchset

10-53

Conditional Variance Parameters
If you specify coefficient vectors GARCH and ARCH, but not their corresponding
model orders P and Q, garchset infers the values of the model orders from the
lengths of the coefficient vectors.

M Nonnegative integer
scalar. Default is 0.

Moving-average model order of an
ARMA(R,M) model.

C Scalar coefficient.
Default is [].

Conditional mean constant. If
C = NaN, garchfit ignores C,
effectively fixing C = 0, without
requiring initial estimates for the
remaining parameters.

AR R-element vector.
Default is [].

Conditional mean autoregressive
coefficients that imply a stationary
polynomial.

MA M-element vector.
Default is [].

Conditional mean moving-average
coefficients that imply an invertible
polynomial.

Regress Vector of coefficients.
Default is [].

Conditional mean regression
coefficients.

Parameter Value Description

VarianceModel 'GARCH', 'EGARCH',
'GJR', or 'Constant'.
Default is 'GARCH'.

Conditional variance model.

P Nonnegative integer
scalar. P must be 0 if Q
is 0. Default is 0.

Model order of GARCH(P,Q),
EGARCH(P,Q), and GJR(P,Q)
models.

Q Nonnegative integer
scalar. Default is 0.

Model order of GARCH(P,Q),
EGARCH(P,Q), and GJR(P,Q)
models.

Parameter Value Description

garchset

10-54

Equality Constraint Parameters
These parameters are used only by garchfit during estimation. Use these
parameters cautiously. The problem can experience difficulty converging if the
fixed value is not well suited to the data at hand.

K Scalar coefficient.
Default is [].

Conditional variance constant.

GARCH P-element vector.
Default is [].

Coefficients related to lagged
conditional variances.

ARCH Q-element vector.
Default is [].

Coefficients related to lagged
innovations (i.e., residuals).

Leverage Q-element vector.
Default is [].

Leverage coefficients for
asymmetric EGARCH(P,Q) and
GJR(P,Q) models.

Parameter Value Description

FixDoF Logical scalar.
Default is [].

Equality constraint indicator for
DoF parameter.

FixC Logical scalar.
Default is [].

Equality constraint indicator for
C constant.

FixAR R-element logical vector.
Default is [].

Equality constraint indicator for
AR coefficients.

FixMA M-element logical vector.
Default is [].

Equality constraint indicator for
MA coefficients.

FixRegress Logical vector.
Default is [].

Equality constraint indicator for
the REGRESS coefficients.

FixK Logical scalar.
Default is [].

Equality constraint indicator for
the K constant.

Parameter Value Description

garchset

10-55

Optimization Parameters
garchfit uses these parameters in calling the Optimization Toolbox function
fmincon during estimation.

Examples This example creates a GARCH(1,1) model, then changes it to a GARCH(1,2)
model. In each case, it displays the relevant fields in the specification
structure. Use garchget to retrieve the values of individual fields.

FixGARCH P-element logical vector.
Default is [].

Equality constraint indicator for
the GARCH coefficients.

FixARCH Q-element logical vector.
Default is [].

Equality constraint indicator for
the ARCH coefficients.

FixLeverage Q-element logical vector.
Default is [].

Equality constraint indicator for
Leverage coefficients.

Parameter Value Description

Display 'on' or 'off'.
Default is 'on'.

Display iterative optimization
information.

MaxFunEvals Positive integer.
Default = (100*number
of estimated
parameters).

Maximum number of objective
function evaluations allowed.

MaxIter Positive integer.
Default is 400.

Maximum number of iterations
allowed.

TolCon Positive scalar.
Default is 1e-007.

Termination tolerance on the
constraint violation.

TolFun Positive scalar.
Default is 1e-006.

Termination tolerance on the
objective function value.

TolX Positive scalar.
Default is 1e-006.

Termination tolerance on
parameter estimates.

Parameter Value Description

garchset

10-56

spec = garchset('P',1,'Q',1) % Create a GARCH(P=1,Q=1) model.

spec =

 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
 Distribution: 'Gaussian'
 C: []
 VarianceModel: 'GARCH'
 P: 1
 Q: 1
 K: []
 GARCH: []
 ARCH: []

spec = garchset(spec,'Q',2) % Change it to a GARCH(P=1,Q=2)
 % model.
spec =

 Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,2)'
 Distribution: 'Gaussian'
 C: []
 VarianceModel: 'GARCH'
 P: 1
 Q: 2
 K: []
 GARCH: []
 ARCH: []

See Also garchfit, garchget, garchpred, garchsim
fmincon (in the Optimization Toolbox)

garchsim

10-57

10garchsimPurpose Univariate GARCH process simulation

Syntax [Innovations,Sigmas,Series] = garchsim(Spec)
[...] = garchsim(Spec,NumSamples,NumPaths)
[...] = garchsim(Spec,NumSamples,NumPaths,State)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance,...
 PreInnovations,PreSigmas,PreSeries)

Description [Innovations,Sigmas,Series] = garchsim(Spec), given specifications for
the conditional mean and variance of a univariate time series, simulates a
sample path with 100 observations for the return series, innovations, and
conditional standard deviation processes. The conditional mean can be of
general ARMA form and the conditional variance of general GARCH,
EGARCH, or GJR form.

[...] = garchsim(Spec,NumSamples,NumPaths) simulates NumPaths sample
paths. Each path is sampled at NumSamples observations.

[...] = garchsim(Spec,NumSamples,NumPaths,State) specifies the state of
the standardized (zero mean, unit variance) , independent, indentically
distributed random noise process.

[...] = garchsim(Spec,NumSamples,NumPaths,State,X) accepts a
time-series regression matrix X of observed explanatory data. garchsim treats
each column of X as an individual time series, and uses it as an explanatory
variable in the regression component of the conditional mean.

[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
accepts a scalar transient response tolerance, such that Tolerance > 0 and ≤ 1.
garchsim estimates the number of observations needed for the magnitude of
the impulse response, which begins at 1, to decay below the Tolerance value.
The number of observations associated with the transient decay period is
subject to a maximum of 10,000 to prevent out-of-memory conditions.
Tolerance is ignored when you specify presample observations
(PreInnovations, PreSigmas, and PreSeries).

garchsim

10-58

Use Tolerance to manage the conflict between transient minimization and
memory usage. Smaller Tolerance values generate output processes that more
closely approximate true steady-state behavior, but require more memory for
the additional filtering required. Conversely, larger Tolerance values require
less memory, but produce outputs in which transients tend to persist.

If you do not explicitly specify presample data (see below), the impulse
response estimates are based on the magnitude of the largest eigenvalue of the
autoregressive polynomial.

[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance,...
PreInnovations,PreSigmas,PreSeries) uses presample observations,
contained in the time-series matrices or column vectors PreInnovations,
PreSigmas, and PreSeries, to simulate the outputs Innovations, Sigmas, and
Series, respectively. When specified, these presample arrays are used to
initiate the filtering process, and thus form the conditioning set upon which the
simulated realizations are based.

If you specify the presample data as matrices, they must have NumPaths
columns. garchsim uses the presample information from a given column to
initiate the simulation of the corresponding column of the Innovations,
Sigmas, and Series outputs. If you specify the presample data as column
vectors, the vectors are applied to each column of the corresponding
Innovations, Sigmas, and Series outputs.

If you provide no explicit presample data, the necessary presample
observations are derived automatically (see “Automatic Minimization of
Transient Effects” on page 4-6.

PreInnovations and PreSigmas are usually companion inputs. Although both
are optional, when specified, they are typically entered together. A notable
exception would be a GARCH(0,Q) (i.e., an ARCH(Q)) model in which the
conditional variance equation does not require lagged conditional variance
forecasts. Similarly, PreSeries is only necessary when you want to simulate
the output return Series, and when the conditional mean equation has an
autoregressive component.

If the conditional mean or the conditional variance equation (“Conditional
Mean and Variance Models” on page 2-6) is not recursive in any way, then
certain presample information is unnecessary to jump-start the models.
However, specifying redundant presample information is not an error, and

garchsim

10-59

garchsim ignores any presample observations you specify for models that
require no such information.

Input
Arguments

Spec GARCH specification structure for the conditional mean
and variance models. You create Spec by calling the
function garchset or the estimation function garchfit.
The conditional mean can be of general ARMAX form and
the conditional variance of general GARCH form.

NumSamples (optional) Positive integer indicating the number of
observations garchsim generates for each path of the
Innovations, Sigmas, and Series outputs. If
NumSamples = [] or is not specified, the default is 100.

NumPaths (optional) Positive integer indicating the number of sample
paths (realizations) garchsim generates for the
Innovations, Sigmas, and Series outputs. If
NumPaths = [] or is not specified, the default is 1; i.e.
Innovations, Sigmas and Series are column vectors.

PreInnovations Time-series matrix or column vector of presample
innovations on which the recursive mean and variance
models are conditioned. This array can have any number
of rows, provided it contains sufficient observations to
initialize the mean and variance equations. That is, if M
and Q are the number of lagged innovations required by
the conditional mean and variance equations, respectively,
then PreInnovations must have at least max(M,Q) rows.
If the number of rows exceeds max(M,Q), then only the last
(i.e., most recent) max(M,Q) rows are used. If
PreInnovations is a matrix, then it must have NumPaths
columns.

garchsim

10-60

PreSigmas Time-series matrix or column vector of positive presample
conditional standard deviations on which the recursive
variance model is conditioned. This array can have any
number of rows, provided it contains sufficient
observations to initialize the conditional variance
equation. That is, if P and Q are the number of lagged
conditional standard deviations and lagged innovations
required by the conditional variance equation,
respectively, then PreSigmas must have at least P rows for
GARCH and GJR models, and at least max(P,Q) rows for
EGARCH models.
If the number of rows exceeds the requirement, then only
the last (i.e., most recent) rows are used. If PreSigmas is a
matrix, then it must have NumPaths columns.

PreSeries Time-series matrix or column vector of presample
observations of the return series of interest on which the
recursive mean model is conditioned. This array can have
any number of rows, provided it contains sufficient
observations to initialize the conditional mean equation.
Thus, if R is the number of lagged observations of the
return series required by the conditional mean equation,
then PreSeries must have at least R rows. If the number
of rows exceeds R, then only the last (i.e., most recent) R
rows are used. If PreSeries is a matrix, then it must have
NumPaths columns.

garchsim

10-61

State State of the standardized (mean zero, unit variance),
independent, identically distributed (i.i.d.) noise process
that drives the output Innovations process (see below).
State can be a scalar or a matrix.
When State is a scalar J, it is passed directly to the
primary random number generators rand and randn, and
resets each generator to its Jth state.

When State is a matrix, it represents a user-specified
time-series matrix of standardized, i.i.d. disturbances that
drive the output Innovations time-series process. As a
matrix, State must have exactly NumPaths columns and at
least NumSamples rows in which the first row contains the
oldest observation and the last row the most recent.
Additional presample observations required to minimize
transients, if any, are generated automatically based on
the distribution found in the input specification structure
Spec and prepended to the input State time-series matrix.
If State has more observations (rows) than necessary,
then only the most recent observations are used.

If State is empty or missing, garchsim uses the current
states of the random number generators. You can set and
query these states directly by calling rand and randn. See
their reference pages for details.

garchsim

10-62

Output
Arguments

Tolerance Scalar transient response tolerance, such that
0 < Tolerance ≤ 1. This tolerance parameter is ignored if
presample conditioning information is specified (see
PreInnovations, PreSigmas, and PreSeries). If empty or
missing, the default is 0.01 (i.e., 1%).

X Time-series regression matrix of observed explanatory
data. Typically, X is a matrix of asset returns (e.g., the
return series of an equity index), and represents the past
history of the explanatory data. Each column of X is an
individual time series used as an explanatory variable in
the regression component of the conditional mean. In each
column, the first row contains the oldest observation and
the last row the most recent.
If X = [] or is not specified, the conditional mean has no
regression component. If specified, then at least the most
recent NumSamples observations of each return series must
be valid (i.e., non-NaN). When the number of valid
observations in each series exceeds NumSamples, garchsim
uses only the most recent NumSamples observations of X.

Innovations NumSamples by NumPaths matrix of innovations, representing
a mean zero, discrete-time stochastic process. The
Innovations time series follows the conditional variance
specification defined in Spec. Rows are sequential
observations, columns are realizations.

Sigmas NumSamples by NumPaths matrix of conditional standard
deviations of the corresponding Innovations matrix.
Innovations and Sigmas are the same size. Rows are
sequential observations. Columns are realizations.

Series NumSamples by NumPaths matrix of the return series of
interest. Series is the dependent stochastic process and
follows the conditional mean specification of general
ARMAX form defined in Spec. Rows are sequential
observations. Columns are realizations.

garchsim

10-63

Examples Example 1. State as an Integer Scalar
The input State can be specified as an integer scalar, or as a time-series
matrix. As an integer scalar, it represents the random number generator state
J and corresponds exactly to the syntax rand('state',J) and
randn('state',J).

This example creates a simple GARCH specification structure for simulation,
and specifies a scalar random number generator state, J = 12345.

spec = garchset('C',0.0001,'K',0.00005,'GARCH',0.8,'ARCH',0.15);
J = 12345;

In this situation, the following two calls to garchsim produce the same
simulated output processes (i.e., e1 = e2, s1 = s2, and y1 = y2).

rand('state',J); randn('state',J);

[e1,s1,y1] = garchsim(spec,100,1);
[e2,s2,y2] = garchsim(spec,100,1,J);

Example 2. State as a Standardized Noise Matrix
When State is a matrix, it represents a user-specified time-series matrix of
standardized (mean zero, unit variance), i.i.d. disturbances {z(t)} that drive
the output time-series processes {e(t)}, {s(t)}, and {y(t)}. For example, if
you run garchsim once, then standardize the simulated residuals and pass
them into garchsim as the i.i.d. noise input for a second run, the standardized
residuals from both runs will be identical. This verifies that the specified input
noise matrix is indeed the "in-sample" i.i.d. noise process {z(t)} for both.

spec = garchset('C',0.0001,'K',0.00005,'GARCH',0.8,'ARCH',0.1);

[e1,s1,y1] = garchsim(spec,100,1);
z1 = e1./s1; % Standardize residuals
[e2,s2,y2] = garchsim(spec,100,1,z1);
z2 = e2./s2; % Standardize residuals

In this case, z1 = z2.

However, although the "in-sample" standardized noise processes are identical,
in the absence of presample data the simulated output processes {e(t)},
{s(t)}, and {y(t)} will differ. This is because, in the absence of presample

garchsim

10-64

data, any additional standardized noise observations necessary to minimize
transients must be simulated from the distribution, 'Gaussian' or 'T', found
in the specification structure.

Now specify all required presample data and repeat the experiment.

[e3,s3,y3] = garchsim(spec,100,1,[],[],[],0.02,0.06);
z3 = e3./s3; % Standardize residuals
[e4,s4,y4] = garchsim(spec,100,1,z3,[],[],0.02,0.06);
z4 = e4./s4; % Standardize residuals

In this case, e3 = e4, s3 = s4, y3 = y4 as well as z3 = z4.

More Examples
For more examples of simulation, see “Simulating Sample Paths” on page 4-2,
“Fitting a Model to a Simulated Return Series” on page 7-3, and “Monte Carlo
Simulation” on page 9-6.

For more comprehensive examples that make use of this functionality, see the
GARCH Toolbox demos “Market Risk Using GARCH, Bootstrapping and
Filtered Historical Simulation,” and “Market Risk Using GARCH, Extreme
Value Theory, and Copulas.” These demos are available only within MATLAB.

See Also garchfit, garchget, garchpred, garchset
rand, randn (MATLAB)

References [1] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics,
Vol. 69, 1987, pp 542-547.

[2] Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp 307-327.

[3] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[4] Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

[5] Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
1982, pp 987-1007.

garchsim

10-65

[6] Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time Varying Risk
Premia in the Term Structure: The ARCH-M Model,” Econometrica,
Vol. 59,1987, pp 391-407.

[7] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation Between
Expected Value and the Volatility of the Nominal Excess Return on Stocks,”
The Journal of Finance, Vol.48, 1993, pp 1779-1801.

[8] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

[9] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

lagmatrix

10-66

10lagmatrixPurpose Create a lagged time-series matrix

Syntax XLAG = lagmatrix(X,Lags)

Description XLAG = lagmatrix(X,Lags) creates a lagged (i.e., shifted) version of a
time-series matrix. The lagmatrix function is useful for creating a regression
matrix of explanatory variables for fitting the conditional mean of a return
series.

Input
Arguments

Output
Arguments

Examples Example 1. The following example creates a bivariate time-series matrix X
with five observations each, then creates a lagged matrix XLAG composed of X
and the first two lags of X. The result, XLAG, is a 5-by-6 matrix.

X Time-series of explanatory data. X can be a column vector or a
matrix. As a column vector, X represents a univariate time series
whose first element contains the oldest observation and whose last
element contains the most recent observation. As a matrix, X
represents a multivariate time series whose rows correspond to
time indices in which the first row contains the oldest observations
and the last row contains the most recent observations. lagmatrix
assumes that observations across any given row occur at the same
time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to every
series in X, then applies the second lag to every series in X, and so
forth. To include a time series as is, include a 0 lag. Positive lags
correspond to delays, and shift a series back in time. Negative lags
correspond to leads, and shift a series forward in time.

XLAG Lagged transform of the time series X. To create XLAG, lagmatrix
shifts each time series in X by the first lag, then shifts each time
series in X by the second lag, and so forth. Since XLAG represents an
explanatory regression matrix, each column is an individual time
series. XLAG has the same number of rows as there are observations
in X, but its column dimension is equal to the product of the number
of columns in X and the length of Lags. lagmatrix uses a NaN
(Not-a-Number) to indicate an undefined observation.

lagmatrix

10-67

X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5] % Create a simple bivariate
 % series.
X =
 1 -1
 2 -2
 3 -3
 4 -4
 5 -5

XLAG = lagmatrix(X,[0 1 2]) % Create the lagged matrix.

XLAG =
 1 -1 NaN NaN NaN NaN
 2 -2 1 -1 NaN NaN
 3 -3 2 -2 1 -1
 4 -4 3 -3 2 -2
 5 -5 4 -4 3 -3

Example 2. See “Fitting a Regression Model to the Same Return Series” on
page 7-5 for another example.

See Also filter, isnan, and nan (all in MATLAB)

lbqtest

10-68

10lbqtestPurpose Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax [H,pValue,Qstat,CriticalValue] = lbqtest(Series,Lags,Alpha,DoF)

Description [H,pValue,Qstat,CriticalValue] = lbqtest(Series,Lags,Alpha,DoF)
performs the Ljung-Box lack-of-fit hypothesis test for model misspecification,
which is based on the Q-statistic

where = sample size, = number of autocorrelation lags included in the
statistic, and is the squared sample autocorrelation at lag . Once you fit a
univariate model to an observed time series, you can use the Q-statistic as a
lack-of-fit test for a departure from randomness. Under the null hypothesis
that the model fit is adequate, the test statistic is asymptotically chi-square
distributed.

Input
Arguments

Q N N 2+()
rk

2

N k–()

k 1=

L

∑=

N L
rk

2 k

Series Vector of observations of a univariate time series for which
lbqtest computes the sample Q-statistic. The last row of Series
contains the most recent observation of the stochastic sequence.
Typically, Series is either the sample residuals derived from
fitting a model to an observed time series, or the standardized
residuals obtained by dividing the sample residuals by the
conditional standard deviations.

Lags Vector of positive integers indicating the lags of the sample
autocorrelation function included in the Q-statistic. If specified,
each lag must be less than the length of Series. If Lags = [] or is
not specified, the default is
Lags = min([20, length(Series)-1]).

lbqtest

10-69

Output
Arguments

Examples Example 1. Create a vector of 100 Gaussian random numbers, then compute
the Q-statistic for autocorrelation lags 20 and 25 at the 10 percent significance
level.

randn('state',100) % Start from a known state.
Series = randn(100,1); % 100 Gaussian deviates ~ N(0,1)
[H,P,Qstat,CV] = lbqtest(Series, [20 25]', 0.10);
[H,P,Qstat,CV]

ans =
 0 0.9615 10.3416 28.4120
 0 0.9857 12.1015 34.3816

Example 2. See “Preestimation Analysis” on page 2-15 for another example.

See Also archtest, autocorr

Alpha Significance levels. Alpha can be a scalar applied to all lags, or a
vector the same length as Lags. If Alpha = [] or is not specified,
the default is 0.05. For all elements, , of Alpha, .

DoF Degrees of freedom. DoF can be a scalar applied to all lags, or a
vector the same length as Lags. If specified, all elements of DoF
must be positive integers less than the corresponding element of
Lags. If DoF = [] or is not specified, the elements of Lags serve as
the default degrees of freedom for the chi-square distribution.

α 0 α 1< <

H Boolean decision vector. 0 indicates acceptance of the null
hypothesis that the model fit is adequate (no serial
correlation at the corresponding element of Lags).
1 indicates rejection of the null hypothesis. H is the same
size as Lags.

pValue Vector of P-values (significance levels) at which lbqtest
rejects the null hypothesis of no serial correlation at each
lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

CriticalValue Vector of critical values of the chi-square distribution for
comparison with the corresponding element of Qstat.

lbqtest

10-70

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

lratiotest

10-71

10lratiotestPurpose Likelihood ratio hypothesis test

Syntax [H,pValue,Ratio,CriticalValue] = lratiotest(BaseLLF,NullLLF,...
 DoF,Alpha)

Description [H,pValue,Ratio,CriticalValue] =
lratiotest(BaseLLF,NullLLF,DoF,Alpha) performs the likelihood ratio
hypothesis test. lratiotest uses as input the optimized log-likelihood
objective function (LLF) value associated with an unrestricted maximum
likelihood parameter estimate, and the LLF values associated with restricted
parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean and
variance specifications to an observed univariate return series. The restricted
models determine the null hypotheses of each test, and the number of
restrictions they impose determines the degrees of freedom of the resulting
chi-square distribution.

BaseLLF is usually the LLF of a larger estimated model and serves as the
alternative hypothesis. Elements of NullLLF are then the LLFs associated with
smaller, restricted specifications. BaseLLF should exceed the values in NullLLF,
and the asymptotic distribution of the test statistic is chi-square distributed
with degrees of freedom equal to the number of restrictions.

Input
Arguments

BaseLLF Scalar value of the optimized log-likelihood objective
function of the baseline, unrestricted estimate. lratiotest
assumes BaseLLF is the output of the estimation function
garchfit or the inference function garchinfer.

NullLLF Vector of optimized log-likelihood objective function values
of the restricted estimates. lratiotest assumes you
obtained the NullLLF values using garchfit or
garchinfer.

lratiotest

10-72

Output
Arguments

Examples See “Likelihood Ratio Tests” on page 8-2 and “Equality Constraints and
Parameter Significance” on page 8-7.

See Also garchfit, garchinfer

References [1] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

DoF Degrees of freedom (i.e., the number of parameter
restrictions) associated with each value in NullLLF. DoF
can be a scalar applied to all values in NullLLF, or a vector
the same length as NullLLF. All elements of DoF must be
positive integers.

Alpha Significance levels of the hypothesis test. Alpha can be a
scalar applied to all values in NullLLF, or a vector the same
length as NullLLF. If Alpha = [] or is not specified, the
default is 0.05. For all elements, , of Alpha, .α 0 α 1< <

H Vector of Boolean decisions the same size as NullLLF.
A 0 indicates acceptance of the restricted model under the
null hypothesis. 1 indicates rejection of the restricted, null
hypothesis model relative to the unrestricted alternative
associated with BaseLLF.

pValue Vector of P-values (significance levels) at which
lratiotest rejects the null hypothesis of each restricted
model. pValue is the same size as NullLLF.

Ratio Vector of likelihood ratio test statistics the same size as
NullLLF. The test statistic is

CriticalValue Vector of critical values of the chi-square distribution.
CriticalValue is the same size as NullLLF.

Ratio 2 BaseLLF NullLLF–()=

parcorr

10-73

10parcorrPurpose Plot or return computed sample partial autocorrelation function

Syntax [PartialACF,Lags,Bounds] = parcorr(Series,nLags,R,nSTDs)

Description parcorr(Series,nLags,R,nSTDs) computes and plots the sample partial
autocorrelation function (partial ACF) of a univariate, stochastic time series.
parcorr computes the partial ACF by fitting successive autoregressive models
of orders 1, 2, ... by ordinary least squares, retaining the last coefficient of each
regression. To plot the partial ACF sequence without the confidence bounds,
set nSTDs = 0.

[PartialACF,Lags,Bounds] = parcorr(Series,nLags,R,nSTDs) computes
and returns the partial ACF sequence.

Input
Arguments

Series Vector of observations of a univariate time series for which
parcorr returns or plots the sample partial autocorrelation
function (partial ACF). The last element of Series contains the
most recent observation of the stochastic sequence.

nLags Positive scalar integer indicating the number of lags of the partial
ACF to compute. If nLags = [] or is not specified, parcorr
computes the partial ACF sequence at lags , where

= min([20,length(Series)-1]).
0 1 2 … T, , , ,

T

parcorr

10-74

Output
Arguments

Examples Example 1. Create a stationary AR(2) process from a sequence of 1000
Gaussian deviates, and then visually assess whether the partial ACF is zero for
lags greater than 2.

randn('state',0) % Start from a known state.

R Nonnegative integer scalar indicating the number of lags beyond
which parcorr assumes the theoretical partial ACF is zero.
Assuming that Series is an AR(R) process, the estimated partial
ACF coefficients at lags greater than R are approximately
zero-mean, independently distributed Gaussian variates. In this
case, the standard error of the estimated partial ACF coefficients
of a fitted Series with observations is approximately
for lags greater than R. If R = [] or is not specified, the default
is 0. The value of R must be less than nLags.

nSTDs Positive scalar indicating the number of standard deviations of
the sample partial ACF estimation error to display, assuming that
Series is an AR(R) process. If the Rth regression coefficient (i.e.,
the last ordinary least squares (OLS) regression coefficient of
Series regressed on a constant and R of its lags) includes
observations, specifying nSTDs results in confidence bounds at

. If nSTDs = [] or is not specified, the default is 2
(i.e., approximate 95 percent confidence interval).

N 1 N⁄

N

nSTDs N⁄()±

PartialACF Sample partial ACF of Series. PartialACF is a vector of
length nLags + 1 corresponding to lags 0, 1, 2, ..., nLags. The
first element of PartialACF is unity,
i.e., PartialACF(1) = 1 = OLS regression coefficient of
Series regressed upon itself. parcorr includes this element as
a reference.

Lags Vector of lags, of length nLags + 1. The elements correspond to
the elements of PartialACF.

Bounds Two-element vector indicating the approximate upper and
lower confidence bounds, assuming that Series is an AR(R)
process. Note that Bounds is approximate for lags greater
than R only.

parcorr

10-75

x = randn(1000,1); % 1000 Gaussian deviates ~ N(0,1).
y = filter(1,[1 -0.6 0.08],x); % Create a stationary AR(2)
 % process.
[PartialACF,Lags,Bounds] = parcorr(y,[],2); % Compute the
 % partial ACF with 95 percent
 % confidence.
[Lags,PartialACF]

ans =
 0 1.0000
 1.0000 0.5570
 2.0000 -0.0931
 3.0000 0.0249
 4.0000 -0.0180
 5.0000 -0.0099
 6.0000 0.0483
 7.0000 0.0058
 8.0000 0.0354
 9.0000 0.0623
 10.0000 0.0052
 11.0000 -0.0109
 12.0000 0.0421
 13.0000 -0.0086
 14.0000 -0.0324
 15.0000 0.0482
 16.0000 0.0008
 17.0000 -0.0192
 18.0000 0.0348
 19.0000 -0.0320
 20.0000 0.0062

Bounds

Bounds =
 0.0633
 -0.0633

parcorr(y,[],2) % Use the same example, but plot
 % the partial ACF sequence with
 % confidence bounds.

parcorr

10-76

Example 2. See “Preestimation Analysis” on page 2-15 for another example.

See Also autocorr, crosscorr
filter (MATLAB)

References [1] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[2] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

Sample Partial Autocorrelation Function

price2ret

10-77

10price2retPurpose Convert a price series to a return series

Syntax [RetSeries,RetIntervals] = price2ret(TickSeries,TickTimes,Method)

Description [RetSeries,RetIntervals] = price2ret(TickSeries,TickTimes,Method)
computes asset returns for NUMOBS price observations of NUMASSETS assets.

Input
Arguments

TickSeries Time series of price data. TickSeries can be a column vector
or a matrix:

• As a vector, TickSeries represents a univariate price series.
The length of the vector is the number of observations
(NUMOBS). The first element contains the oldest observation,
and the last element the most recent.

• As a matrix, TickSeries represents a NUMOBS-by-number of
assets (NUMASSETS) matrix of asset prices. Rows correspond to
time indices. The first row contains the oldest observations
and the last row the most recent. price2ret assumes that
the observations across a given row occur at the same time
for all columns, and each column is a price series of an
individual asset.

TickTimes A NUMOBS element vector of monotonically increasing
observation times. Times are numeric and taken either as
serial date numbers (day units), or as decimal numbers in
arbitrary units (e.g., yearly). If TickTimes = [] or is not
specified, then price2ret assumes sequential observation
times from 1, 2, ..., NUMOBS.

Method Character string indicating the compounding method to
compute asset returns. If Method = 'Continuous', = [], or is
not specified, then price2ret computes continuously
compounded returns. If Method = 'Periodic', then
price2ret assumes simple periodic returns. Method is case
insensitive.

price2ret

10-78

Output
Arguments

Examples Create a stock price process continuously compounded at 10 percent, then
convert the price series to a 10 percent return series.

S = 100*exp(0.10 * [0:19]'); % Create the stock price series
R = price2ret(S); % Convert the price series to a 10 percent
 % return series
[S [R;NaN]] % Pad the return series so vectors are of same
 % length. price2ret computes the ith return from
 % the ith and i+1th prices.

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element column vector,
RetSeries is a NUMOBS-1 column vector.

• When TickSeries is a NUMOBS-by-NUMASSETS matrix,
RetSeries is a (NUMOBS-1)-by-NUMASSETS matrix.
price2ret quotes the th return of an asset for the period
TickTimes(i) to TickTimes(i+1) and normalizes it by the
time interval between successive price observations.

Assuming that

then if Method = 'Continuous', = [], or is not specified,
price2ret computes the continuously compounded th
return of an asset as

If Method = 'Periodic', then price2ret computes the th
simple return as

RetIntervals NUMOBS-1 element vector of interval times between
observations. If TickTimes = [] or is not specified,
price2ret assumes that all intervals are 1.

i

RetIntervals i() TickTimes i 1+() TickTimes i()–=

i

RetSeries i()

TickSeries i 1+()
TickSeries i()

--log

RetIntervals i()
---=

i

RetSeries i()

TickSeries i 1+()
TickSeries i()

-- 1–

RetIntervals i()
---=

price2ret

10-79

ans =

 100.0000 0.1000
 110.5171 0.1000
 122.1403 0.1000
 134.9859 0.1000
 149.1825 0.1000
 164.8721 0.1000
 182.2119 0.1000
 201.3753 0.1000
 222.5541 0.1000
 245.9603 0.1000
 271.8282 0.1000
 300.4166 0.1000
 332.0117 0.1000
 366.9297 0.1000
 405.5200 0.1000
 448.1689 0.1000
 495.3032 0.1000
 547.3947 0.1000
 604.9647 0.1000
 668.5894 NaN

See Also ret2price

ret2price

10-80

10ret2pricePurpose Convert a return series to a price series

Syntax [TickSeries,TickTimes] = ret2price(RetSeries,StartPrice,...
 RetIntervals,StartTime,Method)

Description [TickSeries,TickTimes] =
ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)
generates price series for the specified assets, given the asset starting prices
and the return observations for each asset.

Input
Arguments

RetSeries Time-series array of returns. RetSeries can be a column
vector or a matrix:

• As a vector, RetSeries represents a univariate series of
returns of a single asset. The length of the vector is the
number of observations (NUMOBS). The first element
contains the oldest observation, and the last element the
most recent.

• As a matrix, RetSeries represents a NUMOBS-by-number of
assets (NUMASSETS) matrix of asset returns. Rows
correspond to time indices. The first row contains the
oldest observations and the last row the most recent.
ret2price assumes that the observations across a given
row occur at the same time for all columns, and each
column is a return series of an individual asset.

StartPrice A NUMASSETS element vector of initial prices for each asset,
or a single scalar initial price applied to all assets. If
StartPrice = [] or is not specified, all asset prices start
at 1.

RetIntervals A NUMOBS element vector of time intervals between return
observations, or a single scalar interval applied to all
observations. If RetIntervals = [] or is not specified,
ret2price assumes all intervals have length 1.

ret2price

10-81

Output
Arguments

Examples Example 1. Create a stock price process continuously compounded at 10
percent. Compute 10 percent returns for reference, then convert the resulting
return series to the original price series and compare results.

S = 100*exp(0.10 * [0:19]'); % Create the stock price series
R = price2ret(S); % Convert the price series to a
 % 10 percent return series
P = ret2price(R,100); % Convert to the original price
 % series
[S P] % Compare the original and
 % computed price series

ans =

 100.0000 100.0000

StartTime (optional) Scalar starting time for the first observation,
applied to the price series of all assets. The default is 0.

Method Character string indicating the compounding method used
to compute asset returns. If Method = 'Continuous',
= [], or is not specified, then ret2price computes
continuously compounded returns. If Method = 'Periodic'
then ret2price computes simple periodic returns. Method
is case insensitive.

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element column vector,
TickSeries is a NUMOBS+1 column vector. The first
element contains the starting price of the asset, and the
last element the most recent price.

• When RetSeries is a NUMOBS-by-NUMASSETS matrix, then
RetSeries is a (NUMOBS+1)-by-NUMASSETS matrix. The first
row contains the starting price of the assets, and the last
row contains the most recent prices.

TickTimes A NUMOBS+1 element vector of price observation times. The
initial time is zero unless specified in StartTime.

ret2price

10-82

 110.5171 110.5171
 122.1403 122.1403
 134.9859 134.9859
 149.1825 149.1825
 164.8721 164.8721
 182.2119 182.2119
 201.3753 201.3753
 222.5541 222.5541
 245.9603 245.9603
 271.8282 271.8282
 300.4166 300.4166
 332.0117 332.0117
 366.9297 366.9297
 405.5200 405.5200
 448.1689 448.1689
 495.3032 495.3032
 547.3947 547.3947
 604.9647 604.9647
 668.5894 668.5894

Example 2. This example compares the relative price performance of the
Nasdaq and the NYSE indexes (see “Data Sets” on page 1-11). Before plotting
the series, the example converts the prices to returns, then converts them back
to prices specifying the same starting price, 100, for each series. In the plot, the
blue (upper) plot shows the NASDAQ price series, the green (lower) plot shows
the NYSE price series.

load garchdata
nasdaq = price2ret(NASDAQ);
nyse = price2ret(NYSE);
plot(ret2price(price2ret([NASDAQ NYSE]),100))
ylabel('Prices')
legend('Nasdaq','NYSE',2)

ret2price

10-83

See Also price2ret

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

P
ric

es

Nasdaq
NYSE

ret2price

10-84

A

Bibliography

A Bibliography

A-2

[1] Baillie, R.T., and T. Bollerslev, “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of Econometrics, Vol. 52,
1992, pp 91-113.

[2] Bera, A.K., and H.L. Higgins, “A Survey of ARCH Models: Properties,
Estimation and Testing,” Journal of Economic Surveys, Vol. 7, No. 4, 1993.

[3] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics,
Vol. 69, 1987, pp 542-547.

[4] Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of Econometrics, Vol. 31, 1986, pp 307-327.

[5] Bollerslev, T., R.Y. Chou, and K.F. Kroner, “ARCH Modeling in Finance: A
Review of the Theory and Empirical Evidence,” Journal of Econometrics,
Vol. 52, 1992, pp 5-59.

[6] Bollerslev, T., R.F. Engle, and D.B. Nelson, “ARCH Models,” Handbook of
Econometrics, Volume IV, Chapter 49, pp 2959-3038, Elsevier Science B.V.,
1994.

[7] Bollerslev, T., and E. Ghysels, "Periodic Autoregressive Conditional
Heteroscedasticity," Journal of Business and Economic Statistics, Vol. 14,
1996, pp 139-151.

[8] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

[9] Brooks, C., S.P. Burke, and G. Persand, "Benchmarks and the Accuracy of
GARCH Model Estimation," International Journal of Forecasting, Vol. 17,
2001, pp 45-56.

[10] Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, "The Econometrics of
Financial Markets," Nonlinearities in Financial Data, Chapter 12, Princeton
University Press, 1997.

[11] Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

[12] Engle, Robert F., “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50,
1982, pp 987-1007.

A-3

[13] Engle, Robert F., D.M. Lilien, and R.P. Robins, “Estimating Time Varying
Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica,
Vol. 59, 1987, pp 391-407.

[14] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation between
Expected Value and the Volatility of the Nominal Excess Return on Stocks,”
The Journal of Finance, Vol. 48, 1993, pp 1779-1801.

[15] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

[16] Hagerud, G.E., “Modeling Nordic Stock Returns with Asymmetric
GARCH,” Working Paper Series in Economics and Finance, No. 164,
Department of Finance, Stockholm School of Economics, 1997.
http://netec.mcc.ac.uk/WoPEc/data/Papers/hhshastef0164.html

[17] Hagerud, G.E., “Specification Tests for Asymmetric GARCH,” Working
Paper Series in Economics and Finance, No. 163, Department of Finance,
Stockholm School of Economics, 1997.
http://netec.mcc.ac.uk/WoPEc/data/Papers/hhshastef0163.html

[18] Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

[19] Hentschel, L., “All in the Family: Nesting Symmetric and Asymmetric
GARCH Models,” Journal of Financial Economics, Vol. 39, 1995, pp 71-104.

[20] Johnson, N.L., S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions, Vol. 2, Second edition, John Wiley & Sons, 1995.

[21] McCullough, B.D., and C.G. Renfro, “Benchmarks and Software
Standards: A Case Study of GARCH Procedures,” Journal of Economic and
Social Measurement, Vol. 25, 1998, pp 59-71.
http://qed.econ.queensu.ca/faculty/mackinnon/econ872/papers/mccullough.pdf

[22] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

[23] Peters, J.P., “Estimating and Forecasting Volatility of Stock Indices Using
Asymmetric GARCH Models and Skewed Student-t Densities,” Working
Paper, École d'Administration des Affaires, University of Liège, Belgium,
March 20, 2001. http://www.panagora.com/2001crowell/2001cp_50.pdf

A Bibliography

A-4

Glossary-1

Glossary

Akaike information
criteria (AIC)

A model-order selection criterion based on parsimony. More
complicated models are penalized for the inclusion of additional
parameters. See also Bayesian information criteria.

AR Autoregressive. AR models include past observations of the dependent
variable in the forecast of future observations.

ARCH Autoregressive Conditional Heteroscedasticity. A time-series
technique in which past observations of the variance are used to
forecast future variances. See also GARCH.

ARMA Autoregressive Moving Average. A time-series model that includes
both AR and MA components. See also AR and MA.

autocorrelation
function (ACF)

Correlation sequence of a random time series with itself. See also
crosscorrelation function.

autoregressive See AR.

Bayesian information
criteria (BIC)

A model-order selection criterion based on parsimony. More
complicated models are penalized for the inclusion of additional
parameters. Since BIC imposes a greater penalty for additional
parameters than AIC, BIC always provides a model with a number of
parameters no greater than that chosen by AIC. See also Akaike
information criteria.

conditional Time-series technique with explicit dependence on the past sequence
of observations.

conditional mean Time-series model for forecasting the expected value of the return
series itself.

conditional variance Time-series model for forecasting the expected value of the variance of
the return series.

crosscorrelation
function (XCF)

Correlation sequence between two random time series. See also
autocorrelation function.

equality constraint A constraint, imposed during parameter estimation, by which a
parameter is held fixed at a user-specified value.

excess kurtosis A characteristic, relative to a standard normal probability
distribution, whereby an area under the probability density function is
reallocated from the center of the distribution to the tails (fat tails).
Samples obtained from distributions with excess kurtosis have a
higher probability of containing outliers than samples drawn from a
normal (Gaussian) density. Time series that exhibit a fat tail
distribution are often referred to as leptokurtic.

 Glossary

Glossary-2

explanatory variables Time series used to explain the behavior of another observed series of
interest. Explanatory variables are typically incorporated into a
regression framework.

fat tails See excess kurtosis.

GARCH Generalized Autoregressive Conditional Heteroscedasticity. A
time-series technique in which past observations of the variance and
variance forecast are used to forecast future variances. See also ARCH.

heteroscedasticity Time-varying, or time-dependent, variance.

homoscedasticity Time-independent variance. The GARCH Toolbox also refers to
homoscedasticity as constant conditional variance.

i.i.d. Independent, identically distributed.

innovations A sequence of unanticipated shocks, or disturbances. The GARCH
Toolbox uses innovations and residuals interchangeably.

leptokurtic See excess kurtosis.

MA Moving average. MA models include past observations of the
innovations noise process in the forecast of future observations of the
dependent variable of interest.

MMSE Minimum mean square error. A technique designed to minimize the
variance of the estimation or forecast error. See also RMSE.

moving average See MA.

objective function The function to be numerically optimized. In the GARCH Toolbox, the
objective function is the log-likelihood function of a random process.

partial autocorrelation
function (PACF)

Correlation sequence estimated by fitting successive order
autoregressive models to a random time series by least squares. The
PACF is useful for identifying the order of an autoregressive model.

path A random trial of a time-series process.

P-value The lowest level of significance at which a test statistic is significant.

realization See path.

residuals See innovations.

RMSE Root mean square error. The square root of the mean square error. See
also MMSE.

Glossary

Glossary-3

standardized
innovations

The innovations divided by the corresponding conditional standard
deviation.

time series Discrete-time sequence of observations of a random process. The type
of time series of interest in the GARCH Toolbox is typically a series of
returns, or relative changes of some underlying price series.

transient A response, or behavior, of a time series that is heavily dependent on
the initial conditions chosen to begin a recursive calculation. The
transient response is typically undesirable, and initially masks the
true steady-state behavior of the process of interest.

unconditional Time-series technique in which explicit dependence on the past
sequence of observations is ignored. Equivalently, the time stamp
associated with any observation is ignored.

volatility The risk, or uncertainty, measure associated with a financial time
series. The GARCH Toolbox associates volatility with standard
deviation.

 Glossary

Glossary-4

Index-1

Index

A
ACF 10-10
AIC

computing 10-5
model selection 8-5

aicbic function 10-5
Akaike information criteria

computing 10-5
model selection 8-5

analysis example
using default model 2-15

AR model
converting from ARMA model 10-18

ARCH/GARCH effects
hypothesis test 10-7

archtest function 10-7
ARMA model

converting to AR model 10-18
converting to MA model 10-38

array size 1-7
arrays

time series 1-7
asymptotic behavior

for long-range forecast horizons 6-6
long-range forecasts 6-6

autocorr function 10-10
autocorrelation function 10-10
autoregressive model

converting from ARMA model 10-18

B
Bayesian information criteria

computing 10-5
model selection 8-5

BIC
computing 10-5

model selection 8-5

C
compounding

continuous and periodic 1-8
conditional mean models 2-6

regression components 7-2
conditional standard deviations

inferred from return series 10-33
of forecast errors 10-44
simulating 10-57

conditional variance models 2-6
conditional variances

constant 7-12
constraints

active lower bound example 5-28
equality 8-7
fixing model parameters 8-7
tolerance limits 5-16

conventions
technical 1-7

convergence
avoiding problems 2-15
determining status 5-31
showing little progress 2-15
suboptimal solution 2-15
tolerance options 5-14

crosscorr function 10-14
crosscorrelation function 10-14

D
data sets 1-11

Deutschmark/British Pound FX price series
1-11

Index

Index-2

data sets (continued)
Nasdaq Composite Index 1-12
New York Stock Exchange Composite Index

1-12
default

GARCH model 2-12
default model

estimation and analysis example 2-15
estimation example 2-15

Deutschmark/British Pound FX price series
1-11

distributions
supported 2-4

E
EGARCH(P,Q) conditional variance model 2-8
Engle’s hypothesis test 10-7
equality constraints

initial parameter estimates 8-12
parameter significance 8-7

estimation 5-1
advanced example 9-2
control of optimization process 5-13
convergence 5-14
convergence to suboptimal solution 2-15
count of coefficients 8-5, 10-21
incorporating a regression model 7-3
initial parameter estimates 5-4
maximum likelihood 5-2
number of function evaluations 5-13
number of iterations 5-13
of GARCH process 10-24
optimization results 5-15
parameter bounds 5-9
plotting results 10-41
premature termination 2-15

presample observations 5-11
summary information 10-27
termination criteria 5-13
tolerance options 5-14

estimation example
estimating model parameters 2-23
postestimation analysis 2-26
preestimation analysis 2-15
using default model 2-15

F
fat tails 2-2
financial time series

characteristics 2-2
modeling 2-2

fixing model constraints 8-7
forecast errors

conditional standard deviations 10-44
forecast results

compare with simulation results 9-8
forecasted explanatory data 7-10
forecasting 6-1

advanced example 9-4
asymptotic behavior for long-range 6-6
basic example 6-8
conditional mean of returns 6-3
conditional standard deviations of innovations

6-2
minimum mean square error 6-2
multiperiod volatility example 6-11
multiple realizations example 6-14
plotting results 10-41
presample data 6-5
RMSE of mean forecast 6-4
using a regression model 7-10
volatility of returns 6-3

Index

Index-3

function evaluation count
maximum 5-13

functions
example showing relationships 9-1
primary engines 2-13

G
GARCH

brief description 1-3
limitations 1-4
uses for 1-3

GARCH process
forecasting 10-44
inferring innovations 10-33
parameter estimation 10-24

count of coefficients 10-21
displaying results 10-22

simulation 10-57
GARCH specification structure

contents 3-5
creating and modifying parameters 3-8
definition of fields 10-52
retrieving parameters 10-32

GARCH Toolbox
conventions and clarifications

compounding 1-8
primary functions 2-13

GARCH(P,Q) conditional variance model 2-7
garchar function 10-18
garchcount function 10-21
garchdisp function 10-22
garchfit function 10-24
garchget function 10-32
garchinfer function 10-33
garchma function 10-38
garchplot function 10-41

garchpred function 10-44
garchset function 10-51
garchsim function 10-57
GJR(P,Q) conditional variance model 2-7

H
hypothesis tests

likelihood ratio 10-71
Ljung-Box lack-of-fit 10-68

I
inference

conditional standard deviations 10-33
GARCH innovations 10-33
transient effects example 5-23
using a regression model 7-9

initial parameter estimates 5-4
conditional mean models with regression 5-6
conditional mean models without regression

5-6
conditional variance models 5-7
equality constraints 8-12

innovations
distribution 2-4
forecasting conditional standard deviations

6-2
inferred from return series 10-33
serial dependence 2-4
simulating 10-57

iteration count
maximum 5-13

L
lack-of-fit hypothesis test 10-68

Index

Index-4

lagged time-series matrix 10-66
lagmatrix function 10-66
lbqtest function 10-68
length

vector 1-7
leverage effects 2-2
likelihood ratio hypothesis test 10-71
likelihood ratio tests

model selection 8-2
Ljung-Box lack-of-fit hypothesis test 10-68
log-likelihood functions 5-2

optimized value parameters 10-24
long-range forecasting

asymptotic behavior 6-6
lratiotest function 10-71

M
MA model

converting from ARMA model 10-38
maximum likelihood

estimation 5-2
minimum mean square error

forecasting 6-2
MMSE

forecasting 6-2
model parameters

complete specification 8-12
empty fix fields 8-13
equality constraints 8-7
estimating 2-23
fixing 8-7
parsimony 8-15

model selection and analysis 8-1
AIC and BIC 8-5
correlation in return series 2-18
correlation in squared returns 2-20

Engle’s ARCH test 2-23
likelihood ratio tests 8-2
Ljung-Box-Pierce Q-test 2-22

modeling
financial time series 2-2

models
complete specification 8-12
conditional mean and variance 2-6
GARCH default 2-12

Monte Carlo simulation 7-14
advanced example 9-6
compare with forecast results 9-8

moving average model
converting from ARMA model 10-38

N
Nasdaq Composite Index 1-12
New York Stock Exchange Composite Index 1-12
nonstationary time series 1-9
NYSE Composite Index 1-12

O
ordinary least squares regression 7-12

P
PACF 10-73
parameter estimates

bounds 5-9
displaying results 10-22
equality constraints 8-12
initial 5-4

automatically generated 5-5
user-specified 5-4

Index

Index-5

parameter estimation
plotting results 10-41
univariate GARCH process 10-24

parcorr function 10-73
parsimonious parameterization 8-15
partial autocorrelation function 10-73
plotting

autocorrelation function 10-10
crosscorrelation function 10-14
forecasted results 10-41
parameter estimation results 10-41
partial autocorrelation function 10-73
simulation results 10-41

precision 1-8
prerequisites 1-5
presample data

estimation
automatically generated 5-11
deriving from actual data 5-27
example 5-19
user-specified 5-11

forecasting 6-5
simulation

automatically generated 4-6
user-specified 4-11

price series
converting from return series 10-80
converting to return series 10-77

price2ret function 10-77

R
regression

in Monte Carlo framework 7-14
regression components

conditional mean models 7-2
estimation 7-3

forecasting 7-10
inference 7-9
simulation 7-9

response tolerance
for simulated data 4-7

ret2price function 10-80
return series

converting from price series 10-77
converting to price series 10-80
forecasting conditional mean 6-3
forecasting RMSE of mean forecast 6-4
forecasting volatility 6-3
simulating 10-57

S
shifted time-series matrix 10-66
simulation 4-1

compare with forecast results 9-8
plotting results 10-41
presample data 4-6
response tolerance 4-7
sample paths 4-2
storage considerations 4-9
univariate GARCH processes 10-57
using a regression model 7-9
using ordinary least squares regression 7-12

size
array and vector 1-7

specification structure
contents 3-5
creating and modifying parameters 3-8
definition of fields 10-52
fixing model parameters 8-7
retrieving parameters 10-32

stationary time series 1-9

Index

Index-6

T
termination criteria

estimation 5-13
time series

characteristics of financial 2-2
correlation of observations 2-4
modeling financial 2-2
stationary and nonstationary 1-9
stationary, nonstationary 1-9

time-series matrix 1-7
lagged or shifted 10-66

tolerance options 5-14
constraint violation 5-16
effect on convergence 5-14
effect on optimization results 5-15

transients
automatic minimization 4-6
in presample simulation data 4-6
inference example 5-23
minimization techniques 4-10
simulation process 4-6

V
vector length 1-7
vector size 1-7
volatility

forecasting 6-3
forecasting example 6-11

volatility clustering 2-2

X
XCF 10-14

	Getting Started
	What Is the GARCH Toolbox?
	GARCH Overview
	What Is GARCH?
	Why Use GARCH?
	GARCH Limitations

	Software Requirements and Compatibility
	Expected Background
	Technical Conventions
	Data Sets
	DEM2GBP
	NASDAQ
	NYSE

	GARCH Overview
	Modeling of Financial Time Series
	Characteristics of Financial Time Series
	Correlation and Forecasting of Financial Time Series
	Serial Dependence in Innovations

	Conditional Mean and Variance Models
	Conditional Mean Model
	Conditional Variance Models
	Comments on the Models

	The Default Model
	Primary Toolbox Functions
	Analysis and Estimation Example Using the Default Model
	Preestimation Analysis
	Parameter Estimation
	Postestimation Analysis

	GARCH Specification Structure
	Introduction
	Equation Variables and Parameter Names
	Conditional Mean Model
	Conditional Variance Models

	Examples of Specification Structures
	Reading and Writing Specification Structures
	Creating and Modifying a Specification Structure
	Retrieving Specification Structure Values

	Simulation
	Simulating Sample Paths
	Introduction
	Simulating a Single Path
	Simulating Multiple Paths

	Presample Data
	Automatically Generated Presample Data
	User-Specified Presample Data

	Estimation
	Maximum Likelihood Estimation
	Initial Parameter Estimates
	User-Specified Initial Estimates
	Automatically Generated Initial Estimates
	Parameter Bounds

	Presample Observations
	User-Specified Presample Observations
	Automatically Generated Presample Observations

	Termination Criteria and Optimization Results
	MaxIter and MaxFunEvals
	TolCon, TolFun, and TolX
	Convergence
	Optimization Results
	Constraint Violation Tolerance

	Examples
	Specifying Presample Data
	Presample Data and Transient Effects
	Alternative Technique for Estimating ARMA(R,M) Parameters
	Active Lower Bound Constraint
	Determining Convergence Status

	Forecasting
	Minimum Mean Square Error Forecasting
	Conditional Standard Deviations of Future Innovations
	Conditional Mean Forecasts of the Return Series
	MMSE Volatility Forecasts of Returns
	RMSE Associated with Conditional Mean Forecasts

	Presample Observations
	Asymptotic Behavior for Long-Range Forecast Horizons
	Examples
	Computing a Forecast
	Volatility Forecasts over Multiple Periods
	Computing a Forecast with Multiple Realizations

	Regression Components in Conditional Mean Models
	Introduction
	Incorporating a Regression Model in an Estimation
	Fitting a Model to a Simulated Return Series
	Fitting a Regression Model to the Same Return Series

	Simulation and Inference Using a Regression Component
	Forecasting Using a Regression Component
	Forecasted Explanatory Data
	Generating Forecasted Explanatory Data

	Ordinary Least Squares Regression
	Regression in a Monte Carlo Framework

	Model Selection and Analysis
	Likelihood Ratio Tests
	Akaike and Bayesian Information Criteria
	Equality Constraints and Parameter Significance
	The Specification Structure Fix Fields
	The GARCH(2,1) Model as an Example

	Equality Constraints and Initial Parameter Estimates
	Complete Model Specification
	Empty Fix Fields
	Limiting Use of Equality Constraints

	Simplicity and Parsimony

	Advanced Example
	Estimating the Model
	Forecasting
	Monte Carlo Simulation
	Comparing Forecasts with Simulation Results

	Function Reference
	Functions — Categorical List
	GARCH Modeling
	GARCH Innovations Inference
	Statistics and Tests
	GARCH Specification Structure Interface Functions
	Helpers and Utilities
	Graphics

	Functions — Alphabetical List
	aicbic
	archtest
	autocorr
	crosscorr
	garchar
	garchcount
	garchdisp
	garchfit
	garchget
	garchinfer
	garchma
	garchplot
	garchpred
	garchset
	garchsim
	lagmatrix
	lbqtest
	lratiotest
	parcorr
	price2ret
	ret2price

	Bibliography
	Glossary
	Index

